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Abstract

Nanoparticles, hyperthin films, nanotubes and composite materials obtained on the base of such nanostructures
exhibit very attractive mechanical properties and are great interest to researchers from continuum mechanics. In
this paper, we intend to develop the multiscale continuum model of solids to explain the uncommon properties of
the thin structures and the composite materials with thin structures associated with special type local interactions
between nanoparticles and matrix. We have used the variation approach assuming that the internal interactions
are determined by general character of kinematical connections. This approach allows introducing the system of
internal interactions of various types consequently, which correspond to various types of kinematic restrictions
in the considered mediums. The model of Cosserat’s pseudocontinuum with both nonfree deformations, which
depend on the other generalized coordinates and free deformations and rotations (continuous field of defects) but
with symmetric stress tensor was proposed. The particular model is considered, which according to the authors
view may serve as base for investigations of the scale effects due to cohesion interactions. Description of the
cohesion field near top of cracks and composite materials with inclusions are considered in this research.
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1. Introduction ory is elaborated based on the introducing of the
interatomic potentials of materials in framework
of continuum mechanics. This continuum the-
ory allows to describe the internal interactions at
the nanometer scale. Other approach based on
the higher order continuum theories of elasticity
and Cosserat’s pseudocontinuums theory will pro-
posed in this paper to construct the continuum
theory with scale effects. Further the models with
scale effects are developed on the base of the vari-
ational formalism. Basically, it is accepted that
new approaches should be involved for modeling
multiscale effects in materials. Note that similar
approaches were developed in the recent works
[3-5] which have allowed to account the size de-
pendence of plastic deformation at micron- and

Unusual inherent properties of the hyperthin
structures (nano-particles, nano-tubes) as well as
mechanical properties of the new materials ob-
tained on the base of such nano-structures are
of a great concern and need to be explained. In
particular, composite materials strengthen with
such inclusions are of a great interest. Mechan-
ical properties of such materials are explained
mainly by uncommon inherent properties of the
thin structures, and peculiarities of the interac-
tions between the nano-particles and the matrix
at their contact. These local interactions are con-
centrated near tops of cracks, phase interfaces and
have the multiscale nature. In the recent works

[1, 2] the variant of the nanoscale continuum the-
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submicron- length scales.

It is suggested to use the correct consistent
models built according to mathematically ap-
proved mechanical models to describe the proper-
ties of the thin structure and composites on their
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base. Let us formulate the requirements to such
models, restricting ourselves with the linear mod-
els:

1. The model have to describe the behav-
ior of the deformed media taking into ac-
counts the scale effects. Therefore, among
the physical parameters of the model there
should be constants of various dimensions.

2. The total potential energy of deformation,
written for the model as a function of the
fixed number of arguments have to depend
not only on the volume density of poten-
tial energy, but also on the surface density
of potential energy. This surface density is
thought not to be reduced to some volu-
metric energy. This requirement is due to
the necessity of accounting for the surface
effects and scale effects determined by the
phase interfaces.

3. The model have to be consistent and cor-
rect, i.e. the equations of equilibrium for
the media and the boundary conditions
have to correspond to a variational state-
ment of the problem.

4. The generalized model taking into accounts
the scale effects may not contradict the clas-
sical model, and have to include it as a lim-
iting case. Hence, the presentation of the
solution in the fundamental system may be
in the form of decomposition, including the
term, corresponding to the classical solu-
tion.

A new “kinematic” variation formalism ap-
proach is applied to develop the mathematical
formulation [6, 7]. This approach allows intro-
ducing the system of internal interactions of vari-
ous types consequently, which correspond to vari-
ous types of kinematics restrains in the considered
media.

2. The model of generalized Cosserat’s
medium

Let’s assume, that the Papkovich’s relations are
not satisfied, i.e. are non-homogeneous

% (%’n + %95171 - Wkgink) Enmj = Zij- (1)
Here, as usually it is supposed to conduct sum-
mation over repeated indexes, y;; are components
of the deviator of strain, § — volumetric strain,
wy — vector of elastic rotation, &;jx — compo-
nents of Levi-Chevita’s tensor. Right part of the
Papkovich’s relations (1) determine by the incom-
patibility tensor Z;;. The solution of (1) may be
presented as

1 =
Yij + § 9(5”' - wké',-jk = d?j + d;;-,
where d?j is general solution of homogeneous Pap-
kovich’s relations (1)
OR; 1
d?j = axz = ’yoj + § 005ij — wg&jk,
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where diEj is particular solution of non-
homogeneous Papkovich’s relations (1)

— = 1 = =
dfj = 75- + g 0“(5,']‘ — w,:&jk.

Following to a “kinematic” variation principle, we
shall write the possible work of the interior forces
on corresponding kinematic restrains [6]:
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Integrating by parts the last relation (2), leads:
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where n; is normal vector to the surface of the
considered body. The obtained variation form (2)
allows to establish the lists of arguments of vol-
umetric and surface parts of a potential energy.
Firstly, let’s present the tensor of the incompati-
bility = as expansion on a deviator tensor, sphere
tensor and antisymmetric tensor:
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We will write the tensor and vector magni-
tudes in a surface integral in the last variational
equation as expansion on the normal component
to surface and tangent component to a surface.
With this purpose we introduce the following

kinematic factors in a tangential direction and or-
thogonal direction to a surface:
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possible to write following expansions:

o~

wE = D% + wEny,
Ry, = E}c + Rny.

Expression for a tensor of a free distortion will be
written as
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Taking into account the entered table of symbols
(3)-(6) and assuming that the variation linear
form is integrable (there is a potential energy), we
can establish the list of arguments of volumetric
and surface parts of a potential energy:

Uy = Uv (V) 755 &ijis Ris wis wits &ks 0% 655 €),

e~ o (7)
Ur = Ur (355 7% wis Bi; w=; 6%; R).

Taking into account a physical linearity of stated
model (i.e. quadratic form of a Lagrangian), we
shall present a Lagrangian of considered model
as quadratic form of the arguments of volumet-
ric and surface parts of a potential energy. Co-
efficients in this form define the set of physical
constants of model. In result we can find the



generalized equations of a Hooke’s law (constitu-
tive relations) for common model of a Papkovich—
Cosserat’s continuum for the stresses o;;, for the
moment stresses my;;, for generalized of the cohe-
sion forces o, and for a tensor of cohesion stresses
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The generalized equations of a Hooke’s law for
couple model of a Papkovich—Cosserat’s medium
on a surface of area also can be written:
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The coefficients in the linear forms in the right
parts of constitutive equations are physical con-
stants of model. Among them constants u, A are
Lame’s coefficients. As a result we can write the
Lagrangian and establish the Euler’s equations
and natural boundary conditions:
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Thus, the mathematical statement of a problem
for Papkovich’s—Cosserat’s continuum is formu-
lated, in which the unhomogenious Papkovich’s
relations (1) are introduced. The boundary value
problem for generalized model is constructed.

3. Cohesion field model

Here on the basis of (8) the new model of the
moment cohesion is offered. Let us make a follow-
ing preliminary note. The successive analysis of
Papkovich’s—Cosserat’s continuum allows to for-
mulate the following statements:

e For the Papkovich’s—Cosserat’s continuum
(8) with free deformations the appropri-
ate particular concrete model of a Koiter’s
medium can be established;

e It can be proved exactly that the free strains
can be algebraically written in the explicit
form through some linear differential oper-
ators of the second order from vector of dis-
placements.

The formulated statements give some formal
foundation for simplification of model. Really,
according to the statements the vector of free ro-
tations w, for example, is determined in the fol-
lowing form:

= 00 Own,
wy = aRy, +b”’“+ca_mk +d%5nmk,

where a, b, ¢, d are some constants. The similar
expansions can be established and for 6%, %EJ

For offered most simple model of the “moment”
cohesion we shall take in the expansion for free ro-
tational displacements only one item: w,f = a1 Wg-
In equations for = and ~;; we propose similarly
to accept: 6% = b6, ’yiEj = 0. Here a, and b, are
some rational functions of modules of common
model (8). After such simplifications we shall ac-
cept an extraly following system of simplifying
positions:

e Is considered further, the density of a vol-
umetric potential energy Uy has not cross
terms, i.e. is written in a canonical form;



e The denseness of a surface potential energy
is equal zero;

e The model of the continuum with a sym-
metric stress tensor is studied;

e The “moment Poisson’s constant” is equal
zero (coefficient in the term generated by
the vectors of curvatures £,&, in Uy is equal
z€ero);

e The coefficients, which have stayed after
these simplifications in common model are
selected so that the operator of the govern-
ing equation of model could be submitted
as product of an operator of the classical
theory of elasticity and operator, defining
scale effect.

In result we shall receive the following expres-
sion for Lagrangian:
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The variational equation of considered cohesion
fields model for body with smooth surface can be
written as:
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Here P is vector of density of external loads
in the body’s volume and P! is vector of density
of external loads in the body’s surface. Let’s con-
sider governing equation for model (9). We shall
enter the “classical” operator of balance:

Lij(..)=(u+\) aamf'a;)j +udy A, (10)

It is easy to be convinced of validity of the fol-
lowing equality:

R U .
Af = (2u+ ) Oy Lij (By),
1 8(...)
Awy, = 5 on, Lyj(Rj) Epg-

Taking into account last equations and (10), the
governing equation in (9) can be rewriting in dis-
placements as:

—% Lij(--) + () 8| Lin(Be) + PY = 0. (11)
Here Ry is displacements vector. The offered
model contains only one new physical constant C'
in comparison with the classical theory of elastic-
ity. We can define displacement of cohesion field.
Let’s name a vector of the displacement of cohe-
sion fields (cohesion displacement) the following
vector:
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Using (12) we receive the equations for a vector
function w;:

Hij (Uj) + Pl-v =0,
where

Hij(..)=Li(...) = C(...)6;.

Similarly we shall enter definition of a vector of
classical displacements U; which is satisfies to the
classical equations of balance: L;;(U;) +PY = 0.
In the equation (11) it is possible to change a
sequence of action of operators. Then we shall
receive

and
R,’ = Ul — Uj- (13)

Thus, the boundary value problem (9) represents
the couple boundary value problem for the clas-
sical solution and the solution for cohesion fields
model. The boundary value problem generally is
not divided.

Let’s introduce the orts system X;, Y;, Z; and
consider the plane problem of the “moment” co-
hesion. Assume that there are no projections
of loads in the ort to direction Z;: PiVZi =0
and P} Z; = 0. Similarly, in a vector of the dis-
placements there is no projection on the ort Z;:
R]‘Zj =0: r, = RJ((S,] — ZiZj) and ’I“iZ,' =0. We
assume also, that the vector of displacements r; is

function of two coordinates, i.e. does not depend
or;
on coordinate z, z = z;Z;: — Z; =0.
azvj
Thus, it is supposed, that the vector is deter-
mined in plane area () with border G. The vari-
ational equation (14) then is reduced to the fol-
lowing kind:
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where 7 s = 0rp s/0n, i = r58;+TpN;, Ny is nor-
mal to the boundary G, n;s; = 0. Further the for-
mulation of the plane problem in such statement
will be used for the disperse composite modeling
by numerical methods.

4. Examples

The model of cohesion field (9) will be used
for the description of the deformations in mate-
rials in view of the scale effects associated with
the cohesion interactions. Firstly, we attempt to
estimate the new physical parameter C. It will
be shown that parameter C is concerned with
the famous parameters of the fracture mechanics.
Then, the solutions for a compound material will
be received. On example one-dimensional biplane
problems, the approached estimation of influence
of new scale effects, connected with bounds of
other solid phases on effective characteristics of a
material will be given. At last, within the frame-
work of two-dimensional biplane problems numer-
ical — analytical modeling of the characteristic
cell of material of the rectangular form, contain-
ing two components (matrix and inclusion) will
be given. It is shown account of the cohesion
interactions can give the significant influence on



accommodation properties of a matrix in depen-
dence on the form and the sizes of inclusion.

4.1. Problem of the normal opening crack

Let’s consider the problem of the normal open-
ing crack. This problem was solved within the
framework of double plane statement [6]. Let’s
consider now the same problem from a point of
view of couple model of cohesion interactions also
within the framework of double plane statement.
The asymptotic solution near end of a crack can

be written as

Oq —ar p
v(r,p) = =2 2 (1= e ") (ar)"/? cos (g)

B 1_€—ar . ©
”—"GWSIHG)’

, C
where a®> = —, E is modulus of elasticity.

The written down solution describes the non-
singularity field of the stresses near top of the
crack. This solution has the classical asymptotic
behavior on the infinity [8]. It can be prove, that
solution is a common solution of the equation of
the cohesion field model within the framework of
double plane statement and can be submitted as
the sum of solutions of the harmonic equation and
Helmholtz’s equation. It can be shown that the
boundary conditions for the problem under con-
sideration are satisfied. Let’s show, that constant
of model C is interlinked to known parameters of
a fracture mechanics.

Let’s define distance rg, on which stress as the
function r accepts a maximum value. A require-

ment —o— =0 gives the following equation for
O(ar)

definition arg: €™ = 14 2arq. This equation has
the unique real root: ¢ = arg = 1.256431. Hence,
we can write:
. E
C=¢*= =1.578619 .
To

S| =

Let’s find the connection between amplitudes of
displacements and stresses in a point where the
stresses reach a maximum value. The magnitude
of transverse displacements in this point we can
define as magnitude of the crack open displace-

ment. We can write

v(ro, 0) = =224 (1 — =) (arg)' /2 = =3,

where §, is the crack open displacement. Then,
for amplitude of the stresses we can receive the
following equation:

_E adq (1 + 29)

Oq = e = 0.623581 Ead,.

Let us consider equation (23). Assuming that
maximum of stresses is reached in the point
r =rg, @ =m, we can find:
Oa = Omax (12;_# = 1.566974 0 nax-

Taking into account the previous equation we
can write: omax = 0.397952 Fad,. Assume that
crack open displacement J, reaches to critical
value é., when stresses omax reach to magni-
tude of theoretical strength o.. Thus, we can
introduce the definition of the critical value of

e . Then,

K disol t: 0p = —— ot
crack open displacement: Oc = Gaoz0rs

we can write:

2
a2 = 9 = (70—6/E ) i‘
E 0.397952/ §2
Using of the last equation leads to the following
formula for constant C"

1/2r \* E E
= (220 ) = =0.159948 ..
¢ (0.397952) 5z = OS5

C

Note, that we used here the estimation of the
value o./FE from [9]: 0./FE = 1/2x. It is possible
to define the value ¢ is the length of Barenblat’s
zone [8] through the critical value of crack open
displacement d.: 7o = 3.1415886,. At last, the ad-
ditional modulus C' can be defined through spe-
cific surface energy v. We must use the famous
definition for value v we can get: 2y = 0.0, =

E

o dc. In result, we established that new physical
™

constant of the model C' is determined through



based constants of fracture mechanics:

3

E
C =0.007345 ) (specific surface energy 7);

E
C =1.578619 =  (magnitude of the
"0 Barenblatt’s zone — rq);

C =0.159948 £

52 (critical value of crack
(&

open displacement — 4,.).

4.2. The estimation of properties of peri-
odic structure

Let’s consider the compound beam loaded on
edge at © = 0. Other edge of the beam at x = x4
is loaded by external force P. The beam consists
of two parts: in the first part (0 < x < 1) the
material properties are determined by the mod-
ulus of elasticity Ey; and the cohesive modulus
C, in the second part (21 < < 22) — modu-
lus Ep, and the cohesive module Cp. Contact is
carried out on the line x = x;. The equation of
balance should be solved for each fragment sep-
arately. All values of the first fragment we shall
marked by index M (matrix), the second frag-
ment by index D (defect). The solution of the
written boundary value problems has the follow-
ing view:
P

(@) = oo o= ageon o],
P P
rP(z) = iE O T 5op (x —x1)
P —ap(x—z ED
+EDF.Z'f|:1—€ p( 1)—E—M],
where

I (/TR [/
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are the values which associated with the charac-
teristic sizes of cohesion fields. In the last formu-

las for solutions the following notation is entered:
= EPEY) e val has di

Ty = EDan + EMap)’ e value z; has dimen-

sion of length and is the characteristic of length

“interphase” of cohesion zones on the boundary of

contact of various phases (matrix—inclusion). It

is important to note that this value is determined

only through properties of phases. Let’s enter def-
inition of thickness of an “interphase” layer as x¢.
The potential energy for a matrix and inclusion
(defect) are accordingly:

(o0) = 2 (o)

><|:< i >¢2xf+:vf£<aM)}
Ty — T1 ap

The first item in the written equations corre-
sponds to classical representations of energy of
deformation of the matrix and inclusion. Last
two items correspond to the contribution of the
cohesion the fields concentrated near boundary of
contact of phases. We can formulate the following
conclusions:

1. Redistribution of potential energy of defor-
mation from less rigid fraction to the more
rigid fraction takes place. In comparison
with classical representation the matrix is
unloaded, and an arming element (or de-
fect) are loaded in addition. The effect of
strengthening takes place.

2. For disperse composites the contribution to
energy of deformation from a “volumetric”
share of scale effects of cohesion fields grows
under the square-law. For comparison, for
a classical part energy of deformation grows
linearly from a volume fraction of the arm-
ing fragment.

The solution received above takes into account
the effects associated with the cohesion interac-
tions concentrated in a zone of contact of phases.
Let’s consider a compound beam, which consists
from N + 1 a fragment of a matrix (with char-
acteristics Eps, Cpr) and N fragments of the re-
inforced material (with characteristics Ep, Cp).
The beam is in conditions uniaxial loading. We
will try to establish the approached estimation
of effective rigidity for such the composite ma-
terial on the basis of one-dimensional model of
“moment cohesion” (9) within the framework of
one-dimensional statement. Writing the energy
of deformation of the beam after obvious trans-



formations we can receive:
M)

U PZ[(ZM lD)_2(ED—E
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Let’s compare this equation for energy with the
potential energy of deformation for equivalent
homogeneous beam with the modulus Ey. With
the definition of a volume fraction of defects

f= __ b
(l m+l D)
tion for the effective module Ej

, we can receive the following equa-

EM

Ey = 1_@1)57;;1\4)0-%21\70;%)]'

The last formula shows, that the modulus of a
composite is determined not only through the tra-
(BP — EM)
ED
use of algorithm of Reuss’s averaging. In a de-
nominator of the received formula there is the
additional item reflecting dependence of rigidity
from quantity of defelgts N %nd length of an inter-
B —ET) N 281 g
ED (lM + lD)
expression is connected to the account of the co-
hesion fields near boundaries of contact of phases
(matrix—inclusion). We have significant influence
on rigidity when the length interphase cohesion
zones xy becomes the same order, as length of

ditional parameter f appearing at

phase layer zj:

. . l
separate inclusion If: x; ~ I, 1§ = ﬁ, where

Ip is a volume fraction of inclusions. In result,
the end formula for the effective module of the
beam FEy can be write as:

EM
(ED _EM) 2wy
(1= =7 1+ 3]

Ey =

The formula allows us to describe at a qualitative
level effect of increase of rigidity of a composite
reinforced by the nanoparticles. The following
results can be formulated:

1. In area of zones of contact there is the in-
terphase layer caused by cohesion interac-
tions. The interphase layer can give appre-
ciable influence on rigidity of a composite
material. The degree of this influence is

determined by extent of zones of contact
by thickness of an interphase layer and its
rigidity. If to assume, that z; ~ I& it is
easy to be convinced a volume fraction oc-
cupied with this layer, approximately twice
exceeds a volume fraction of inclusion.

2. The account of cohesion interactions quali-
tatively allows to model known effect of in-
crease of rigidity of a disperse composite at
reduction of the size of inclusion. The given
formula shows that at the same degree of
reinforcing (f = const), rigidity of a com-
posite material is increased with decreasing
of average length of inclusion &

4.3. Composite cell with elliptic inclusion

The problem of modeling of cell with inclusion
as some element of composite material is consid-
ered. This problem corresponds to a so-called
case of a double plane problem in which two com-
ponents of displacements are equal to zero. The
problem is reduced to system of two equations
(for classical and cohesion field,constituting the
solution of full problem), connected among them-
selves through a special jump condition on con-
tour of an ellipse. The algorithm of dividing of
initial domain on blocks [10, 11] was applied at re-
alization of a block analytical-numerical method
for a double plane problem for a plate with ellip-
tic inclusion [12]. In this problem it is required
to find function R satisfying the equation:

1
—m LLCRﬁm - 0, L - LO|C=0’
o? 02

with conditions of jump junction of a special kind
on contour of inclusion.

The solution of a problem was constructed in
two stages from two functions, R = U — u. At
the first stage the classic problem was solved
(LU = 0) with boundary conditions on border
of inclusion and a plate of the following kind:
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oU oU
U] =0, “a_nJ“(’”A)a_x =0,
U(:i:L,y)::izl, O0<y<H,
oUu oU
a—n(fL’,O):a—n(Z’,H):o, _L<Z’<L,

where [U] = Uy — Up, Uy, are the displace-
ments in inclusion and a matrix, u, A are material
constants (Lame coefficients), C' is parameter of
cohesion field, L, H are accordingly semi-width
and height of a plate. At the second stage dis-
placement of cohesion field u as the solution of a
non-classical problem was found (Lcu = 0) with
boundary conditions of the following kind:

W= [5-5

m) on  On ’
u(xL, y) =0, 0<y<H,
Ou Ou
5, (& 0) = o (¢, H) =0, <z <L,
where (u) = uy + Um, uf, are the displace-

ments in inclusion and in a matrix, Cy ., are co-
hesion parameters in inclusion and in a matrix,
(u) = pg + tm, pfm are the shear modulus in
inclusion and in a matrix.

In a double plane problem two components of
stress tensor are distinct from zero:

Ux:(2u+)\)g—];, szzug—f-
Investigation of a distribution of stresses o, was
carried out in [12], depending on parameters C
and p, and also from geometrical parameters of
an ellipse. The comparison of this solution with
classical problem shows that character of distri-
bution of a field of tension noticeably varies. If
in classic problem concentration of a field is in a
matrix, then in a full problem concentration of a
field prevails in inclusion [12].

In this work the distribution of potential energy
in matrix and inclusion is investigated. Energy in
a plate, equal to half work of external forces, can

be counted as integral:

1
EG) = 3 /(oznw + Typyy) Rds
oG
1 R\’
= [ =|(2 A =—
[3le+(5)
G
2
+,u<a—R> - CuR} dz dy,
dy
where p, = oyn,; + Tpyny — a component of a

vector of surface forces, u — displacement of co-
hesion field (the solution of a problem of the sec-
ond stage). It is of interest the value of accomo-
dation of energy in inclusion n = Ef/E,,, it is
equal to the ratio of energy in a matrix to en-
ergy in inclusion [13]. We shall note, that in the
integral on area there is a value of local energy
g(R). Calculations were fulfilled under following
assumptions: L =1, H = 1.2, vy = v, = 0.3,
E¢/Ey =3, C¢/pus = Cm/pm = 100; major axis
of ellipse a = 1.4e, minor axis of ellipse b = 0.5¢,
where € = (0.9, 0.7, 0.5).

Figure 1. Examples of distribution of local energy
e(U) and e(R) in a classic and full problem at
partial turn of inclusion

Levels of energy distribution on Fig.1 is pre-
sented with step 0.8u,,, major axis of ellipse
a = 1.4e, minor axis of ellipse b = 0.5¢, where



e = 1.2, angle 8 between major axis and axis of
ordinate is # = (0°, 21°, 36°). On the Fig.2 is
presented distribution energy under full turn of
inclusion: major axis of ellipse a = 1.4e, minor
axis of ellipse b = 0.5¢, where € = 0.7, angle 6 be-
tween major axis and axis of ordinate is changed
between 10° and 90° with step 10°. Numerical
investigation shows that account of cohesion field
(cohesion parameter C) leads to changing stress
field and potential energy in the matrix and in-
clusions in composite. These effects allows to
explain some unique properties of disperse com-
posites with nanoinclusions. Figure 2 shows the
distribution of the accommodation parameter n
from the rotation of inclusions. Thus, for matrix

- -+ Classic problem
— Full problem

Accomodation
w
.
N

4

10 20 30 40 50 60 70 8 90

Rotation (grad)
Figure 2. Dependence of accommodation 7 from
rotation parameters of inclusion (full turn of in-
clusion) in a classic and full problem

with inclution in the considered cases taking co-
hesion interactions into accountleads to the effect
of "unloading” of the matrix and to additional
increase in the cell rigidity. It is shown, that ac-
counting for the cohesion interactions results in
reduction of concentration of deformation energy
in the matrix in the vicinity of inclusions.
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