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Abstract

Nanoparticles, hyperthin films, nanotubes and composite materials obtained on the base of such nanostructures

exhibit very attractive mechanical properties and are great interest to researchers from continuum mechanics. In this

paper, we intend to develop the multiscale continuum model of solids to explain the uncommon properties of the thin

structures and the composite materials with thin structures associated with special type local interactions between

nanoparticles and matrix. We have used the variation approach assuming that the internal interactions are determined

by general character of kinematical connections. This approach allows introducing the system of internal interactions of

various types consequently, which correspond to various types of kinematic restrictions in the considered mediums. The

model of Cosserat�s pseudocontinuum with both non-free deformations, which depend on the other generalized co-

ordinates and free deformations and rotations (continuous field of defects) but with symmetric stress tensor was

proposed. The particular model is considered, which according to the authors view may serve as base for investigations

of the scale effects due to cohesion interactions. Description of the cohesion field near top of cracks and composite

materials with inclusions are considered in this research.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Unusual inherent properties of the hyperthin
structures (nanoparticles, nanotubes) as well as

mechanical properties of the new materials ob-

tained on the base of such nanostructures are of a

great concern and need to be explained. In par-

ticular, composite materials strengthen with such
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inclusions are of a great interest. Mechanical

properties of such materials are explained mainly

by uncommon inherent properties of the thin
structures, and peculiarities of the interactions

between the nanoparticles and the matrix at their

contact. These local interactions are concentrated

near tops of cracks, phase interfaces and have the

multiscale nature. In the recent works [1,2] the

variant of the nanoscale continuum theory is

elaborated based on the introducing of the inter-

atomic potentials of materials in framework of
continuum mechanics. This continuum theory
ed.
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allows to describe the internal interactions at the

nanometer scale. Other approach based on the

higher order continuum theories of elasticity and

Cosserat�s pseudocontinuums theory will proposed

in this paper to construct the continuum theory
with scale effects. Further the models with scale

effects are developed on the base of the variational

formalism. Basically, it is accepted that new ap-

proaches should be involved for modeling multi-

scale effects in materials. Note that similar

approaches were developed in the recent works

[3–5] which have allowed to account the size

dependence of plastic deformation at micron- and
submicron-length scales.

It is suggested to use the correct consistent

models built according to mathematically ap-

proved mechanical models to describe the prop-

erties of the thin structure and composites on

their base. Let us formulate the requirements to

such models, restricting ourselves with the linear

models:

1. The model have to describe the behavior of the

deformed media taking into accounts the scale

effects. Therefore, among the physical parame-

ters of the model there should be constants of

various dimensions.

2. The total potential energy of deformation, writ-

ten for the model as a function of the fixed num-
ber of arguments have to depend not only on

the volume density of potential energy, but also

on the surface density of potential energy. This

surface density is thought not to be reduced to

some volumetric energy. This requirement is

due to the necessity of accounting for the sur-

face effects and scale effects determined by the

phase interfaces.
3. The model have to be consistent and correct, i.e.

the equations of equilibrium for the media and

the boundary conditions have to correspond to

a variational statement of the problem.

4. The generalized model taking into accounts the

scale effects may not contradict the classical

model, and have to include it as a limiting case.

Hence, the presentation of the solution in the
fundamental system may be in the form of de-

composition, including the term, corresponding

to the classical solution.
A new ‘‘kinematic’’ variation formalism ap-

proach is applied to develop the mathematical

formulation [6,7]. This approach allows introduc-

ing the system of internal interactions of various

types consequently, which correspond to various
types of kinematics restrains in the considered

media.
2. The model of generalized Cosserat’s medium

Let us assume, that the Papkovich�s relations

are not satisfied, i.e. are non-homogeneous

o

oxj
cin

�
þ 1

3
hdin � xkEink

�
Enmj ¼ Nij: ð1Þ

Here, as usually it is supposed to conduct sum-

mation over repeated indexes, cij are components

of the deviator of strain, h––volumetric strain,

xk––vector of elastic rotation, Eijk––components

of Levi–Chevita�s tensor. Right part of the Pap-

kovich�s relations (1) determine by the incompati-

bility tensor Nij. The solution of (1) may be

presented as

cij þ
1

3
hdij � xkEijk ¼ d0

ij þ dN
ij ;

where d0
ij is general solution of homogeneous

Papkovich�s relations (1)

d0
ij ¼

oRi

oxj
¼ c0ij þ

1

3
h0dij � x0

kEijk;

where dN
ij is particular solution of non-homoge-

neous Papkovich�s relations (1)

dN
ij ¼ cNij þ

1

3
hNdij � xN

kEijk:

Following to a ‘‘kinematic’’ variation principle, we

shall write the possible work of the interior forces

on corresponding kinematic restrains [6]:

�ddU ¼
Z Z Z

rijd c0ij

��
þ 1

3
h0dij � x0

kEijk �
oRi

oxj

�
þ mijd Nij

�
� o

oxm
� cNin

�
þ 1

3
hNdin

� xN
kEink

�
Enmj

��
dV :
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Integrating by parts the last relation (2), leads:

�ddU ¼
Z Z Z

orij

oxj
dRi

�
þ rijdc

0
ij þ

1

3
rijdijdh

0

� rijEijkdx
0
k þ mijdNij þ

1

2

omin

oxm
Ejmn

�
þ 1

2

omjn

oxm
Eimn �

1

3

omkn

oxm
Ekmndij

�
dcNij

þ 1

3

omnj

oxm
Enmjdh

N � omij

oxm
EnmjEinkdx

N
k

�
dV

þt
�
� rijnjdRi � minnmEjmnd

� cNij

�
þ 1

3
hNdij � xN

kEijk

��
dF ; ð2Þ

where ni is normal vector to the surface of the
considered body. The obtained variation form (2)

allows to establish the lists of arguments of volu-

metric and surface parts of a potential energy.

Firstly, let us present the tensor of the incompat-

ibility N as expansion on a deviator tensor, sphere

tensor and antisymmetric tensor:

Nij ¼ nij þ
1

3
ndij � nkEijk;

nij ¼
1

2
ðNij þ NjiÞ �

1

3
Nppdij

¼ 1

2

ocNin
oxm

Enmj

 
þ
ocNjn
oxm

Enmi

!

þ 1

2

oxN
i

oxj

 
þ 1

2

oxN
j

oxi
� 1

3

oxN
k

oxk
dij

!
;

n ¼ Nijdij ¼ �2
oxN

k

oxk
;

nk ¼
1

2
NijEijk

¼ �
ocNkq
oxq

þ 1

3

ohN

oxk
þ 1

2

oxN
n

oxm
Enmk:

ð3Þ

We will write the tensor and vector magnitudes

in a surface integral in the last variational equation

as expansion on the normal component to surface

and tangent component to a surface. With this

purpose we introduce the following kinematic

factors in a tangential direction and orthogonal

direction to a surface:
ĉcNpq ¼ cNpqðdiq � ninqÞðdnp � nnnpÞ;

x̂xN
k ¼ xN

k ðdkq � nknqÞ;bRRk ¼ Rqðdkq � nknqÞ;
ĉcNk ¼ cNpqnqðdnp � nnnpÞ;

xN ¼ xN
q nq;

R ¼ Rqnq;

cN ¼ cNpqnpnq;

ð4Þ

possible to write following expansions:

xN
k ¼ x̂xN

k þ xNnk;

cNij ¼ ĉcNij þ ĉcNj ni þ ĉcNi nj þ cNninj;

Rk ¼ bRRk þ Rnk:

ð5Þ

Expression for a tensor of a free distortion will be

written as

dN
ij ¼ cNij þ

1

3
hNdij � xN

kEijk

¼ ðĉcNij þ ĉcNj ni þ ĉcNi nj þ cNninjÞ þ
1

3
hNdij

� ðx̂xN
k þ xNnkÞEijk: ð6Þ

Taking into account the entered table of symbols

(3)–(6) and assuming that the variation linear form

is integrable (there is a potential energy), we can

establish the list of arguments of volumetric and
surface parts of a potential energy:

UV ¼ UV ðc0ij; cNij; nij;Rk;x
0
k ;x

N
k ; nk; h

0; hN; nÞ;
UF ¼ UF ðĉcNij; ĉcNk ;xN

k ;
bRRk;x

N; hN;RÞ:
ð7Þ

Taking into account a physical linearity of stated

model (i.e. quadratic form of a Lagrangian), we

shall present a Lagrangian of considered model as

quadratic form of the arguments of volumetric and

surface parts of a potential energy. Coefficients in

this form define the set of physical constants of

model. In result we can find the generalized
equations of a Hooke�s law (constitutive relations)

for common model of a Papkovich–Cosserat�s
continuum for the stresses rij, for the moment

stresses mij, for generalized of the cohesion forces

rk and for a tensor of cohesion stresses in volume

pij
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rij ¼
oUV

oðoRi=oxjÞ
; mij ¼

oUV

oNij
;

rk ¼
oUV

oRk
; pij ¼

oUV

odN
ij
:

The generalized equations of a Hooke�s law for

couple model of a Papkovich–Cosserat�s medium
on a surface of area also can be written:

ŝsNij ¼
oUF

ocNij
; ŝsNk ¼ oUF

oĉcNk
; bmmk ¼

oUF

ox̂xN
k

;

fk ¼
oUF

obRRk

; mN ¼ oUF

oxN
; rN ¼ oUF

ohN
;

f ¼ oUF

oR
:

The coefficients in the linear forms in the right

parts of constitutive equations are physical con-

stants of model. Among them constants l, k are

Lame�s coefficients. As a result we can write the

Lagrangian and establish the Euler�s equations

and natural boundary conditions:

dL ¼
Z Z Z

orij

oxj

��
� ri þ Xi

�
dRi

� omN
in

oxm
Enmj

�
þ pij

�
ddN

ij

�
dV

þt ðYi
�

� rijnj � fiÞdbRRi

þ ðYini � rijninj � f ÞdRþ ðminnmEnmj � ŝsNijÞdĉcNij
þ ðminninmEnmk � ŝsNk ÞdĉcNk
� ðminnmEnmjEijk þ bmmkÞdbmmN

k

� ðminnmnkEijkEnmj þmNÞdxN

þ 1

3
mindijnmEnmj

�
� rN

�
dhN
�
dF ¼ 0: ð8Þ

Thus, the mathematical statement of a problem for

Papkovich�s–Cosserat�s continuum is formulated,

in which the unhomogenious Papkovich�s relations
(1) are introduced. The boundary value problem

for generalized model is constructed.
3. Cohesion field model

Here on the basis of (8) the new model of the

moment cohesion is offered. Let us make a fol-
lowing preliminary note. The successive analysis of

Papkovich�s–Cosserat�s continuum allows to for-

mulate the following statements:

• For the Papkovich�s–Cosserat�s continuum (8)
with free deformations the appropriate particu-

lar concrete model of a Koiter�s medium can be

established.

• It can be proved exactly that the free strains can

be algebraically written in the explicit form

through some linear differential operators of

the second order from vector of displace-

ments.

The formulated statements give some formal

foundation for simplification of model. Really,

according to the statements the vector of free ro-

tations xN
k , for example, is determined in the fol-

lowing form:

xN
k ¼ aRk þ bxk þ c

oh
oxk

þ d
oxn

oxm
Enmk;

where a, b, c, d are some constants. The similar
expansions can be established and for hN, cNij.

For offered most simple model of the ‘‘mo-

ment’’ cohesion we shall take in the expansion for

free rotational displacements only one item: xN
k ¼

a1xk: In equations for hN and cNij we propose sim-

ilarly to accept: hN ¼ b1h, cNij ¼ 0. Here a1 and b1
are some rational functions of modules of com-

mon model (8). After such simplifications we shall
accept an extraly following system of simplifying

positions:

• Is considered further, the density of a volumet-

ric potential energy UV has not cross-terms, i.e.

is written in a canonical form.

• The denseness of a surface potential energy is

equal zero.
• The model of the continuum with a symmetric

stress tensor is studied.

• The ‘‘moment Poisson�s constant’’ is equal zero
(coefficient in the term generated by the vectors

of curvatures nknk in UV is equal zero).

• The coefficients, which have stayed after these

simplifications in common model are selected

so that the operator of the governing equation
of model could be submitted as product of an
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operator of the classical theory of elasticity and

operator, defining scale effect.

In result we shall receive the following expres-
sion for Lagrangian:

L ¼ A� 1

2

Z Z Z
2lcijcij

"
þ 2l

3

�
þ k

�
h2

þ 8
l2

C
nijnij þ

ð2lþ kÞ2

C
hihi

#
dv:

Here hi ¼ oh
oxi

and

nij ¼ � 1

2

o2Rn

oxioxm
Emnj �

1

2

o2Rn

oxjoxm
Emni:

The variational equation of considered cohesion

fields model for body with smooth surface can be

written asZ Z Z
ð2l
"

þ kÞ oh
oxi

þ 2l
oxn

oxm
Enmi

� 2l2

C
D
oxn

oxm
Enmi �

ð2lþ kÞ2

C
D
oh
oxi

þ PV
i

#
dRi dV

�t

(
� 2l2

C
ðnmnjEijn þ nnnjEijmÞ

oxn

oxm

þ ð2lþ kÞ2

C
oh
oxk

nkni

)
d
oRi

oxq
nq dF

þt PF
i

(
� 2lcij

"
þ 2l

3

�
þ k

�
hdij

þ 2l2

C
DxnEijn �

ð2lþ kÞ2

C
Dhdij

#
nj

þ ðdqj � nqnjÞ
o

oxq

"
� 2l2

C
oxk

oxp

�
þ oxp

oxk

�
npEijk

þ ð2lþ kÞ2

C
oh
oxk

nkdij

#)
dRi dF ¼ 0: ð9Þ

Here PV
i is vector of density of external loads in

the body�s volume and PF
i is vector of density of

external loads in the body�s surface. Let us con-

sider governing equation for model (9). We shall

enter the ‘‘classical’’ operator of balance:
Lijð� � �Þ ¼ ðlþ kÞ o
2ð� � �Þ
oxioxj

þ ldijDð� � �Þ: ð10Þ

It is easy to be convinced of validity of the fol-

lowing equality:

Dh ¼ 1

ð2lþ kÞ
oð� � �Þ
oxi

LijðRjÞ;

Dxk ¼ � 1

2l
oð� � �Þ
oxq

LpjðRjÞEpqk:

Taking into account last equations and (10), the

governing equation in (9) can be rewriting in dis-
placements as�
� 1

C
Lijð� � �Þ þ ð� � �Þdij

�
LjkðRkÞ þ PV

i ¼ 0: ð11Þ

Here Rk is displacements vector. The offered model

contains only one new physical constant C in

comparison with the classical theory of elasticity.

We can define displacement of cohesion field. Let

us name a vector of the displacement of cohe-

sion fields (cohesion displacement) the following
vector:

ui ¼ � 1

C
LijðRjÞ

¼ � 1

C
ðl
�

þ kÞ o2Rj

oxioxj
þ ldijDRj

�
: ð12Þ

Using (12) we receive the equations for a vector

function ui:

HijðujÞ þ PV
i ¼ 0;

where

Hijð� � �Þ ¼ Lijð� � �Þ � Cð� � �Þdij:
Similarly we shall enter definition of a vector of

classical displacements Ui which is satisfies to the

classical equations of balance: LijðUjÞ þ PV
i ¼ 0: In

the Eq. (11) it is possible to change a sequence of

action of operators. Then we shall receive

Ui ¼
�
� 1

C
Lijð� � �Þ þ ð� � �Þdij

�
Rj

and

Ri ¼ Ui � ui: ð13Þ
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Thus, the boundary value problem (9) represents

the couple boundary value problem for the clas-

sical solution and the solution for cohesion fields

model. The boundary value problem generally is
not divided.

Let us introduce the orts system Xi, Yi, Zi and

consider the plane problem of the ‘‘moment’’ co-

hesion. Assume that there are no projections of

loads in the ort to direction Zi : PV
i Zi ¼ 0 and

PF
i Zi ¼ 0: Similarly, in a vector of the displace-

ments there is no projection on the ort

Zi : RjZj ¼ 0 : ri ¼ Rjðdij � ZiZjÞ and riZi ¼ 0. We
assume also, that the vector of displacements ri is
function of two coordinates, i.e. does not depend

on coordinate z, z ¼ xjZj :
ori
oxj

Zj ¼ 0.

Thus, it is supposed, that the vector is deter-

mined in plane area X with border G. The varia-

tional Eq. (14) then is reduced to the following

kind:Z Z ��
� 1

C
Lijð� � �Þ þ ð� � �Þdij

�
LjkðrkÞPV

i

�
dri dxdy

�
I
niZi¼0

l2

C
€rrs

 
� o_rrn

os

!
d_rrs ds

�
I
niZi¼0

ð2lþ kÞ2

C
€rrn

 
� o_rrs

os

!
d_rrn ds

þ
I
niZi¼0

PF
s

(
� l_rrs

�
þ l

orn
os

� l2

C
r2 _rrs

�
� orn

os

��

þ ð2lþ kÞ2

C
o2 _rrs
os2

 
þ o€rrn

os

!)
drs dF

þ
I
niZi¼0

PF
n

(
� ð2l
"

þ kÞ_rrn þ k
ors
os

� ð2lþ kÞ2

C
r2 ors

os

�
þ _rrn

�#

� l2

C
o€rrs
os

 
� o2 _rrn

os2

!)
drn dF ¼ 0; ð14Þ

where _rrn;s ¼ orn;s=on, ri ¼ rssi þ rnni, ni is normal to

the boundary G, nisi ¼ 0. Further the formulation

of the plane problem in such statement will be used

for the disperse composite modeling by numerical

methods.
4. Examples

The model of cohesion field (9) will be used for

the description of the deformations in materials in
view of the scale effects associated with the cohe-

sion interactions. Firstly, we attempt to estimate

the new physical parameter C. It will be shown

that parameter C is concerned with the famous

parameters of the fracture mechanics. Then, the

solutions for a compound material will be re-

ceived. On example one-dimensional biplane

problems, the approached estimation of influence
of new scale effects, connected with bounds of

other solid phases on effective characteristics of a

material will be given. At last, within the frame-

work of two-dimensional biplane problems nu-

merical–analytical modeling of the characteristic

cell of material of the rectangular form, containing

two components (matrix and inclusion) will be

given. It is shown account of the cohesion in-
teractions can give the significant influence on

accommodation properties of a matrix in depen-

dence on the form and the sizes of inclusion.

4.1. Problem of the normal opening crack

Let us consider the problem of the normal

opening crack. This problem was solved within the
framework of double plane statement [6]. Let us

consider now the same problem from a point of

view of couple model of cohesion interactions also

within the framework of double plane statement.

The asymptotic solution near end of a crack can be

written as

mðr;uÞ ¼ �2
ra

aE
ð1� e�arÞðarÞ1=2 cos u

2

� �
;

r ¼ ra
1� e�ar

ðarÞ1=2
sin

u
2

� �
;

where a2 ¼ C
E, E is modulus of elasticity.

The written down solution describes the non-

singularity field of the stresses near top of the

crack. This solution has the classical asymptotic

behavior on the infinity [8]. It can be prove, that

solution is a common solution of the equation of

the cohesion field model within the framework of
double plane statement and can be submitted as
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the sum of solutions of the harmonic equation and

Helmholtz�s equation. It can be shown that the

boundary conditions for the problem under con-

sideration are satisfied. Let us show, that constant

of model C is interlinked to known parameters of a
fracture mechanics.

Let us define distance r0, on which stress as the

function r accepts a maximum value. A require-

ment or
oðarÞ ¼ 0 gives the following equation for

definition ar0 : ear0 ¼ 1þ 2ar0. This equation has

the unique real root: q ¼ ar0 ¼ 1:256431. Hence,

we can write:

C ¼ q2
E
r20

¼ 1:578619
E
r20
:

Let us find the connection between amplitudes of
displacements and stresses in a point where the

stresses reach a maximum value. The magnitude of

transverse displacements in this point we can de-

fine as magnitude of the crack open displacement.

We can write

mðr0; 0Þ ¼ �2
ra

aE
ð1� e�ar0Þðar0Þ1=2 ¼ �da;

where da is the crack open displacement. Then, for

amplitude of the stresses we can receive the fol-

lowing equation:

ra ¼ E
adað1þ 2qÞ

4q3=2
¼ 0:623581Eada:

Let us consider the equation for stresses r. As-

suming that maximum of stresses is reached in the

point r ¼ r0; u ¼ p; we can find:

ra ¼ rmax

ð1þ 2qÞ
2q1=2

¼ 1:566974rmax:

Taking into account the previous equation we

can write: rmax ¼ 0:397952Eada. Assume that

crack open displacement da reaches to critical va-

lue dc, when stresses rmax reach to magnitude of

theoretical strength rc. Thus, we can introduce the

definition of the critical value of crack open dis-
placement: dc ¼ rc=E

0:397952a. Then, we can write:

a2 ¼ C
E
¼ rc=E

0:397952

� �2
1

d2c
:

Using of the last equation leads to the following

formula for constant C:
C ¼ 1=2p
0:397952

� �2 E

d2c
¼ 0:159948

E

d2c
:

Note, that we used here the estimation of the value

rc=E from [9]: rc=E ¼ 1=2p: It is possible to define
the value r0 is the length of Barenblatt�s zone [8]

through the critical value of crack open displace-

ment dc : r0 ¼ 3:141588dc. At last, the additional

modulus C can be defined through specific surface

energy c. We must use the famous definition for

value c we can get: 2c ¼ rcdc ¼ E
2p dc. In result, we

established that new physical constant of the

model C is determined through based constants of
fracture mechanics:

C ¼ 0:007345
E3

c2
ðspecific surface energycÞ;

C ¼ 1:578619
E
r20

ðmagnitude of the Barenblatt’s zone—r0Þ;

C ¼ 0:159948
E

d2c
ðcritical value of crack open displacement—dcÞ:
4.2. The estimation of properties of periodic struc-

ture

Let us consider the compound beam loaded on

edge at x ¼ 0. Other edge of the beam at x ¼ x2
is loaded by external force P . The beam consists

of two parts: in the first part ð06 x < x1Þ the

material properties are determined by the modu-

lus of elasticity EM and the cohesive modulus CM ,

in the second part ðx1 < x6 x2Þ––modulus ED,

and the cohesive module CD. Contact is carried

out on the line x ¼ x1: The equation of bal-

ance should be solved for each fragment sepa-
rately. All values of the first fragment we shall

marked by index M (matrix), the second fragment

by index D (defect). The solution of the writ-

ten boundary value problems has the following

view:

rMðxÞ ¼ P
EMF

½x� xf e�aM ðx1�xÞ�;
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rDðxÞ ¼ P
EMF

x1 þ
P

EDF
ðx� x1Þ

þ P
EDF

xf 1

�
� e�aDðx�x1Þ � ED

EM

�
;

where

am ¼
ffiffiffiffiffiffiffi
CM

EM

r
; aD ¼

ffiffiffiffiffiffi
CD

ED

r
are the values which associated with the charac-

teristic sizes of cohesion fields. In the last formulas

for solutions the following notation is entered:

xf ¼ ðED�EM Þ
EDaMþEMaDÞ. The value xf has dimension of

length and is the characteristic of length ‘‘inter-

phase’’ of cohesion zones on the boundary of

contact of various phases (matrix–inclusion). It is

important to note that this value is determined

only through properties of phases. Let us enter
definition of thickness of an ‘‘interphase’’ layer as

xf . The potential energy for a matrix and inclusion

(defect) are accordingly:

UM

UD

 !
¼ P 2

2F

1=EM

1=ED

 !

�
x1

x2 � x1

� ��
� 2xf þ x2f

aM

aD

� ��
:

The first item in the written equations corresponds

to classical representations of energy of deforma-

tion of the matrix and inclusion. Last two items

correspond to the contribution of the cohesion the

fields concentrated near boundary of contact of

phases. We can formulate the following conclu-

sions:

1. Redistribution of potential energy of deforma-

tion from less rigid fraction to the more rigid

fraction takes place. In comparison with classi-

cal representation the matrix is unloaded, and

an arming element (or defect) are loaded in ad-

dition. The effect of strengthening takes place.

2. For disperse composites the contribution to en-
ergy of deformation from a ‘‘volumetric’’ share

of scale effects of cohesion fields grows under

the square-law. For comparison, for a classical

part energy of deformation grows linearly from

a volume fraction of the arming fragment.
The solution received above takes into account

the effects associated with the cohesion interac-

tions concentrated in a zone of contact of phases.

Let us consider a compound beam, which consists

from N þ 1 a fragment of a matrix (with charac-
teristics EM , CM ) and N fragments of the reinforced

material (with characteristics ED, CD). The beam is

in conditions uniaxial loading. We will try to es-

tablish the approached estimation of effective ri-

gidity for such the composite material on the basis

of one-dimensional model of ‘‘moment cohesion’’

(9) within the framework of one-dimensional

statement. Writing the energy of deformation of
the beam after obvious transformations we can

receive:

U ¼ P 2

2F
lM
EM

��
þ lD
ED

�
� 2

ðED � EMÞ
EMED

Nxf

�
:

Let us compare this equation for energy with the
potential energy of deformation for equivalent

homogeneous beam with the modulus E0. With the

definition of a volume fraction of defects f ¼
lD

ðlMþlDÞ, we can receive the following equation for

the effective module E0

E0 ¼
EM

1� ðED�EM Þ
ED f þ 2N xf

ðlMþlDÞ

� �h i :
The last formula shows, that the modulus of a

composite is determined not only through the

traditional parameter ðED�EM Þ
ED f appearing at use of

algorithm of Reuss�s averaging. In a denominator

of the received formula there is the additional item

reflecting dependence of rigidity from quantity of

defects N and length of an interphase layer xf :
ðED�EM Þ

ED N 2xf
ðlMþlDÞ. This expression is connected to the

account of the cohesion fields near boundaries of

contact of phases (matrix–inclusion). We have

significant influence on rigidity when the length

interphase cohesion zones xf becomes the same

order, as length of separate inclusion lD0 : xf � lD0 ,
lD0 ¼ lD

N , where lD is a volume fraction of inclusions.
In result, the end formula for the effective module

of the beam E0 can be written as

E0 ¼
EM

1� ðED�EM Þ
ED f 1þ 2xf

lD
0

� �h i :
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The formula allows us to describe at a qualitative

level effect of increase of rigidity of a composite

reinforced by the nanoparticles. The following re-

sults can be formulated:

1. In area of zones of contact there is the inter-

phase layer caused by cohesion interactions.

The interphase layer can give appreciable influ-

ence on rigidity of a composite material. The

degree of this influence is determined by extent

of zones of contact by thickness of an inter-

phase layer and its rigidity. If to assume, that
xf � lD0 it is easy to be convinced a volume frac-

tion occupied with this layer, approximately

twice exceeds a volume fraction of inclusion.

2. The account of cohesion interactions qualita-

tively allows to model known effect of increase

of rigidity of a disperse composite at reduction

of the size of inclusion. The given formula

shows that at the same degree of reinforcing
(f ¼ const.), rigidity of a composite material is

increased with decreasing of average length of

inclusion lD0 .
4.3. Composite cell with elliptic inclusion

The problem of modeling of cell with inclusion

as some element of composite material is consid-
ered. This problem corresponds to a so-called case

of a double plane problem in which two compo-

nents of displacements are equal to zero. The

problem is reduced to system of two equations (for

classical and cohesion field, constituting the solu-

tion of full problem), connected among themselves

through a special jump condition on contour of an

ellipse. The algorithm of dividing of initial domain
on blocks [10,11] was applied at realization of a

block analytical-numerical method for a double

plane problem for a plate with elliptic inclusion

[12]. In this problem it is required to find function

R satisfying the equation:

� 1

Cf ;m
LLCRf ;m ¼ 0; L ¼ LCjC¼0;

LC ¼ ð2lþ kÞ o2

ox2
þ l

o2

oy2
� Cf ;m
with conditions of jump junction of a special kind

on contour of inclusion.

The solution of a problem was constructed in

two stages from two functions, R ¼ U � u. At the
first stage the classic problem was solved ðLU ¼ 0Þ
with boundary conditions on border of inclusion

and a plate of the following kind:

½U � ¼ 0; l
oU
on

�
þ ðlþ kÞ oU

ox

�
¼ 0;

Uð�L; yÞ ¼ �1; 0 < y < H ;

oU
on

ðx; 0Þ ¼ oU
on

ðx;HÞ ¼ 0; �L < x < L;

where ½U � ¼ Uf � Um, Uf ;m are the displacements

in inclusion and a matrix, l, k are material con-

stants (Lame coefficients), C is parameter of co-
hesion field, L;H are accordingly semi-width and

height of a plate. At the second stage displacement

of cohesion field u as the solution of a non-classical

problem was found ðLCu ¼ 0Þ with boundary

conditions of the following kind:

½u� ¼ ½l�
hli hui;

ou
on

�
� oU

on

�
¼ 0;

uð�L; yÞ ¼ 0; 0 < y < H ;

ou
on

ðx; 0Þ ¼ ou
on

ðx;HÞ ¼ 0; �L < x < L;

where hui ¼ uf þ um; uf ;m are the displace- ments in
inclusion and in a matrix, Cf ;m are cohesion pa-

rameters in inclusion and in a matrix, hli ¼ lf þ
lm, lf ;m are the shear modulus in inclusion and in a

matrix.

In a double plane problem two components of

stress tensor are distinct from zero:

rx ¼ ð2lþ kÞ oR
ox

; sxy ¼ l
oR
oy

:

Investigation of a distribution of stresses rx was

carried out in [12], depending on parameters C and

l; and also from geometrical parameters of an el-

lipse. The comparison of this solution with classi-

cal problem shows that character of distribution of

a field of tension noticeably varies. If in classic
problem concentration of a field is in a matrix,



Fig. 1. Examples of distribution of local energy eðUÞ and eðRÞ
in a classic and full problem at partial turn of inclusion.

Fig. 2. Dependence of accommodation g from rotation pa-

rameters of inclusion (full turn of inclusion) in a classic and full

problem.
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then in a full problem concentration of a field

prevails in inclusion [12].

In this work the distribution of potential energy

in matrix and inclusion is investigated. Energy in a
plate, equal to half work of external forces, can be

counted as integral:

EðGÞ ¼ 1

2

Z
oG

ðrxnx þ sxynyÞRds

¼
Z
G

1

2
ð2l
"

þ kÞ oR
ox

� �2

þ l
oR
oy

� �2

� CuR

#
dxdy;

where px ¼ rxnx þ sxyny––a component of a vector

of surface forces, u––displacement of cohesion

field (the solution of a problem of the second

stage). It is of interest the value of accomodation

of energy in inclusion g ¼ Ef=Em, it is equal to the

ratio of energy in a matrix to energy in inclusion
[13]. We shall note, that in the integral on area

there is a value of local energy eðRÞ: Calculations
were fulfilled under following assumptions: L ¼ 1,

H ¼ 1:2, mf ¼ mm ¼ 0:3, Ef =Em ¼ 3, Cf=lf ¼ Cm=
lm ¼ 100; major axis of ellipse a ¼ 1:4e, minor axis

of ellipse b ¼ 0:5e; where e ¼ ð0:9; 0:7; 0:5Þ.
Levels of energy distribution in Fig. 1 is pre-

sented with step 0:8lm, major axis of ellipse a ¼
1:4e, minor axis of ellipse b ¼ 0:5e, where e ¼ 1:2,
angle h between major axis and axis of ordinate is

h ¼ ð0�; 21�; 36�Þ. On the Fig. 2 is presented dis-

tribution energy under full turn of inclusion: major

axis of ellipse a ¼ 1:4e, minor axis of ellipse b ¼
0:5e, where e ¼ 0:7, angle h between major axis

and axis of ordinate is changed between 10� and

90� with step 10�. Numerical investigation shows
that account of cohesion field (cohesion parameter

C) leads to changing stress field and potential en-

ergy in the matrix and inclusions in composite.

These effects allows to explain some unique prop-

erties of disperse composites with nanoinclusions.

Fig. 2 shows the distribution of the accommoda-

tion parameter g from the rotation of inclusions.

Thus, for matrix with inclusion in the considered
cases taking cohesion interactions into account

leads to the effect of ‘‘unloading’’ of the matrix and

to additional increase in the cell rigidity. It is
shown, that accounting for the cohesion interac-

tions results in reduction of concentration of de-

formation energy in the matrix in the vicinity of

inclusions.
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