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Abstrnct, The models of medin with mubiscalo effects aoe copstractsd hased on
tle virtational formalism. The iotermal interactions are deiermine) by kipmnote
cunstraints of general character. These models take into acconnt the superficial of-
fects and internal interactions similar 0o intesatomic forces of coapling, Thi models
of meshia with a continuows Geld of delects of variows types are considered, D
scriptions of the media with defects. cohesgon field models as a special case of the
Cosseral models are conapdered. This pageer i devoted o the copsidesstion of dis
perse comnposite matertals reinforced by nanoparticles. For noperical sinolation,
the gew e#lfcaent black mnlp'llnn]-nmn'i.ﬂl method i ll-u'm]np-nd orintec] o the
genitinl case af solving problems tn complex-shaged 200 and 310 domaims. As an
exammiple of sumerical mvestigation of the bterfacial interartions I beterogenesos
miedin, the medinm with feluseons & considersd,

1 Kinematic variational modeling of the medium

A varinnt of the varintional formalism is developed. The varinnm proposed al-
bows s Lo obtain constitutive equations, the system of equilibriom equations
and boundary conditions [1)-[4]. A Runctional is constructed by taking into
pocount kinemnatic constralnts. The baste fidea 13 that the general chamactor
of kinematic constraints determines the internal interactions. An algorithm
proposed for the formulation of the model includes the following stages:

o Studying kinematic models, we can state kinematie constraimts in media,

w Usinig the varational prnciple of possible displocemcnts, we can doter-
mine tlae varkation of the work dose by internad forees on the kinematic
cofstradnts, As a result, the tensor of the Lagrange multipliors desorilses
A speetrium of inlersctions that corresponds to the internal kinematic
capstraints,

& [ntegrating by part, we obiain & Boear variational forme aml a st of
ArEUITLS.

w Assumas that only the reversible processes are oomsidered, Then, the linesae
varintional form is inbegrable and the potentinl energy can bie formlansd.
For a Hoear elastle mosdiom, 1l gquaccie form for the density of potential
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eperey can lee olibadees] The potentbal mmegy b5 forpdated] taking into
acconnd Uy tenesor’s dimensions of the argumenes,

o Tuking nto sccoont b expression of potential energy, we can amive s
e constitutive copantions,

o The constitttbve equations allos us to obladn partieular expressions for
the potentinl energy, which defines the mathematical statement of the
modded as a whole,

It b worth conplinsizing that the proposed sanational mothod pesds fixed sets
if argyoments i the volame and in the soperficial parts of potential energy.
Thess sets of argumests pee dictatod by the imtrodeced kinematie const raints,
The correct mathematical staternent i= cealized as o resalt of the proposesd
Wgorithm, By comparizson, the sot of arguments for the Sedov sariational
formali=m i determined only for the volumeteic part of the potenstial encrgy;
comsequently, some additionn] physical resumptions should be introduced to
define thie st of arguments for the superficial part of the potentinl enorgy.

2 HKinematic models

Ltk a5 peprresent a sonsyomteis distoriion tensor relesred associabed with
b Cartesion coonlinites as fellows:

ol SN 17 ()

ﬂ.l."l = Fiy 3 7] Bk =
Here, B, are the components of the displacement vector, 7y and # are the
components of te devistor of the deformntion tersor and the deviator of the
spherical tensor, wy are the components of the rotation vector, £ is the
Lewvi-Civita tensor, 4,5 is the Kronecker delta, and wy = —§ & %.

The comlitions of the existence of the gquadratores (the conditions of
the existenes of corvesponding line (contor) integral) Tor tlee generalized
Canchy rolistionships (1) can be written in che following from:

% (‘Hn + %Nln = II"'l"':l'rll-) Er:ﬂiJ =1, (2]
These relationships (2) are known as the Papkovich eqations. Similarly, the
woll-Jmown: Saint-YVenant eqguations can be obtained a8 the nocesspry ool
mifficient conditions of contimiity for the rotation vector we. The Canchy
rolationships (1), the Paplovich equations (21, amd the Saint-Yenant equa-
ticmns oy bo treated ns kinematic oonstraings [21-[4]. &1 these relatioshis
are used in the algorithm of the model proposed. The quasi-classteal model
of & medium with a nonsymmetric stress tensor can be formulated by using
the nonsymmetric Caochy relationships (1), Considiring the Papkovich
equations (2] and the Sattt-Venant squations as kinemathe constraints, we
can obitaln o Cossornt mode] for o medioan with nonfree rotations, that is,
ritations that depend oo other generslioed coordinates, b partienlar, the
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Papkovich equations (2] give us the following variational squation:

1 AR,
i’ = f/f {ﬂuﬂ [‘1.j - iﬁdu — Lk ﬁ;:

(3)
| 1
= b [E (‘ru: + E'Mm #3 ﬂ_IT:' Eml-) Em-]” LLE

Hoere, oy and my; are tho components of the stress tonsar and the conpunents
of the Cosserat stress tonsor, respectively. These squations may be used as
a base for the mathematical deseription of the generalised Cosserat moded
with restricted rotations,

Let ws assume that the linear form (3) & integrable, Then, we can

represent the potintial gy as folkows:
-l!['r =fj U‘i' (g‘f‘janl _ﬂi |-IJ|.1- HHI E) I'!I!'.

dry,

+# Up (H'.. ?FI: ny ) dF.
Here, ny are the components of the normal vector of the boundary surface F
of the elastie body under considerntion,

Thus, for a linear elastic medinen, we ean obtain the quadric form for
the denshty of the potential energy. The systom of constitutive equations
can be found with the aid of the Green relationships, The components of
generalized static strain and stress state i the body and the superficial
foress on the surfare can be found by nsing the formulas:

R, ;
au=ﬂm-/ﬂ(£;). mu=mn~fa(ﬂm}). #.=W1.-fﬂ(%).
] a i

¥ = ﬂ'E'irl-"_flﬂ-ﬁlh .fu = ﬂ[.",.-‘fﬂﬂ“ Wiy = ﬂi'.-rrlfﬂﬁ,

‘where H, = (0R,/0r,)  n,.

It is worth emphasizing that the coeffichnts of quadeatic terms of Ly
i {4} are determined by the deformations e e aned B These confficients
define the system of conventional elastic properties of the medinm and have
dimensions of stressis. The constant coefficlonts of quardratic terms which
are associated with the vectors R, w,, and o and the tensor ﬁf: are
of the remalning dimensions. The multiscale effocts of other type can bo
determined with the aid of these eonstants. We further suppose that some
of these constants allow s to deseribe the interactions comesponding to the
Internal cobesion.

O the other land, 17 (4] can be reprosonted as

4)

1 -
Up = 3 (ARG + 20 RBG + AR B gy + BR R 6y - niny) -
1‘2”1-".:-&1 Idu = Mty 4 E?ﬁqﬂjl:d.u = II..h‘.]]' .
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The constants A, Ay and Ay in (5) determing the surface effects associated
withi tho normal to the sarfuee of the body, and the constants B, By, amd B
i (5] dhietermine the superficial effects o the tangential plane,

2.1 Kinomstic model for the Cosseral psewdocont inam
(the felds of defects)

Tos ahiseribe the mosdela of media with o comtincaes fedd of defects, we udbll

constifer the conditions of nonstegrability of the Canchy celationships (1)
instend the Papkovich equations (2):

] 1 —7
E (Tl.-. =l = —'Jrfihl) Enmy = i W

The tensor =), is such that '-DFL = 0. This tensor deterenines e ficld of

incompatibility for displacements. A vector of jumps in displacements can
be found by using the tensor (6, In other words, we can say that the vie
tunl Burgers vector is representod by 255, Furthermore, when this vector &
written s the flux of the tensar 25 through any surface, this flux, gives the
virtual Burgers vector of dislocation, That s why the tensor Z5; is called the
ilislocation density tensor,

Using the relationships (6) as kinematic constraints, we can constrc
the Cosserat peevdocontivaom with frew deformations and rotatlons, tha
is, with deformntions and rotations considered as independent generalioed
poordinates, In this case, the mathematical statement of the probdes
Typsanl wm Ll Tolloaving variniiosnl copution:

8 = ﬂf{u.,ﬁ(-r,, = 0% — i — %’If)

ﬂ = I = & 5 4
+ ulﬁ [I—:IJ = F {'fﬁl + E'E_'Ein X i-'*'JT'l'F:I'rl:l) anm!ﬂ V.

{7

Hero, '|-ﬂ1 ap, and #7 are defined by the right-hand part of the tensor equa
ticai (44) and can bhe eonsidersd as particalar solutions of this tenser eopeatios

Taking into aecount the definition of the Luaﬂernt. r'ﬂTII|.1IIJ1II.'II. wie will
define o), 8, and o] as nonfres deformations and ‘rG, #=, and wF ax free
Hl"ﬁdl‘ﬂlﬂllﬂ:ﬂ!

Similnrly, the Cosserat models Basod an the oonditions of nonintegrability
far the Papkovich squntions was obiaioed, the disclination cmsity tensor wis
defisd, and the mathematical statement of the problem for the genesalized
Cosserat peeadocontinmm wis formmlated in [5].

This process may: b continaesd and the comditions of nonintegrabiliey oo
thee Saimt=Yepant relationships with respeet to the grodient of the volutbe
deforpmtion @ may bo obtained (4], As o resule, o mew type of didects s mod-
edid. Thia type of defects is wlditional to the dislocations and disclinations.
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These difects are determined by jumps in 880, and are deseribsod witli the
aidd of the density tensor. Thus, the procedure of modeling propossd gives us
the patural classitication of models for continuums with defeces [5].

3 The model of the cohesion Held

One particular case of the Cosserat pseudocontimunm (7] gives us the variant
of the cohesion field modad [4], [5]:

f 1 {.'., y [—‘E‘ P &,.{...:] Re + x,] SRy v "

+-# [—ﬁ.ﬁ %?'— "y +‘EJH;] dF =10,
‘Herz, P !

Ll = (3u+ A) B, 5;: +(p+x) [:'hﬂ-“-"] = HT-{;J)

. 4
M, = M I;I] [r:l,.n_.,.E.',,. £ [1 =2} ”n“,ffuﬂl] X
r dxm

V=1 [2;¢-M - (2?'“ + J.) 885 — 2ywuip

a8 2

+zm:u 2a Em_ﬂ-""‘” ﬂdﬂ&,,l g+ (dgy — mgmy)
8 [ UpsxP ;[0
&:. p-l-,‘q'} [ +_,[1_:_Ip]-a ]I'I'Ei;l
I
H,.—"a":"“‘*l

h‘#dhﬂwtﬂphﬂﬂpﬂﬂm ft; 1 the vector of total displacoment, p

il A are the Lame coefficlents, s, is a dimensionless constant of the nmdnl
13 is a dimensional constant of the Cosserat pseudocontingum.

Lat us Introduce the classical displacement vector associated with the
of the classical theory of elasticity Ly nnd the cobesion displsce-
voectar sssociated with non-classical soabe effects:

2
H‘:Ur—"" U.= [—%Lu!]""ﬁu:.ub R‘ {Eh
rl
“.' = —En Lufﬁr: 5

/i s the classical displacement vector and w, s the coleion dinglace
vertior,
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Then, we can restobe the mathomatical statement of the problem (8}
The varitional equation (8) implies the following differential equilibrium
eepuations and boundary conditions for the model ander consideration

n i .
Lolth) + Xi=0,  Lylu) - ;—5 o+ X =0 -

L= ﬁ (M, 807 + ¥, 805, — Mydii = Yidu} dF = 0.

4 Numerical simulation of media with inclusions
by the block analytical-numerical method

The simulation of physical processes in non-classical media with inclusion:
can be offectively performed by the method based on analytical represen-
tations of the salution (so-called block analytical-numerical method [6]-[8])
The general scheme of the method consists in covering the imitial reglon Ly o
st of stmple sub-regions called blocks, A solution in every block is appros-
mated by 4 series in terms of special funetions (called multipoles], which b
reproduce the analytical propertbes of the solution and strongly satisly the
problem's operator equations. Comparing with finite element and boundar
element methods, the method proposed has the advantage that e gives us the
passibility to employ more complicated functions, which can describe anady

ical properties of the solution near to boandary singularities of the domaln
(for instance, reentrant corners with small or sero rounding radii [6]). Besades
the ropresentation of the solution in analytbeal form, this method facilitaies
procedures of caleulation and optimization of effective and locnl chasactori-
tics of the heterogeneous medin with nclhusions.

-.- J. — -
| " - — . - o
' -
. o
[ i,
. \
R |
i\ R
& S =4 [
-
."1.._.

Flig. 1. Various types of (nelssdons

For warious types of inclustons (see Fig, 1), the first step |s to constrict
a hlock structure coversd U initial region. The following method for the
pomstrsction can b proposed.

For a plane problem, in a domain with an elliptic inclusion (as an e
see Flg. 23, we use a rectangular grid and then additionally split those pocts
angular eolls that nre intersecting by the boundary of the inchusion. Then =
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Fig. 2. Construction of block strocture

circuniscribe a circle about every coll and obtain cireular blocks as 1t shawn
in Fig. 2.

~ Let us now consider the double plane problem (&, =8 H; =Ry =0) for
the total displacement vector B = I/ = u in the ol with constryeted hioek

- structure. From the above discussbon it appears that now the probilem can be
 stated as follows:

&

Lol R=0, L=Lc|,,, E-c-='[2#+,l]§:?+pa?—ch
H_{R; in inclusion _E - w .
T Aw mmarix P IEEST YT Aonge

r equations should be completed by the following conditions on the
ndary of the inclusion and the cell:

)= [55] =0, [W1=0, [

Ri+ L, y) = +1, M

0,

0, = O<y<i,

%-E{:,ﬂ}:%[:..‘f}=ﬂ. ¥ =0, =L<rel,

Wisere E Is the modulus of elasticity (Young's modulus),  is Poisson's ratin,
L= 113 is & dimensional constant of the Cosserat pseudocontinuum, (R =
Bf — R,., is the jump at the inclusion, /00 is the derivative in the direction
f the boundary normal vector with the components n, and ny, H in the
gt of the cell, and £ is the half-wilth of the cell,

Far a numerical example, bt us assume the following vales of parameters:
£= vy = 03, EpfE. =3, and Cp /= Cytiy = 1Kk

L may bet proved that an approximate iterative algoeithm for the solution
S8 the probibem (9) can be used. Here, to constouet the approximate solution,
_'l'ﬁtritl. tirselves bo the fret step in the iterative Iraendure, which lhas
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First, the classical problem (£ 0 = (] s solved for the following boundary
comlitions:

=0, [p ':_;..I;’: + {ju+ A) %L;n_,l =i, (11a)
Ui L, y) = £1, lzp<H, (11
arr au

it = - - ; 11c)
ﬂn{rrﬂl E"E:,H] 0, =L<cz<k {11c

Serond, the displacement of the colision feld u is found as a solution of
the non-classical equation (£ u = 0) with the following boundary conditions
at the contonr of the inclusion and at the boundary af the cell:

_ el du_ Bt _ .,
vl = {5 (), e ﬂ"] =1, (124!
u{E L, 4] =0, Dop<H, {12k
du du
E‘I. 0 = F;!I, Hy=0, -L<zr<l. (12¢

Here,
() =up+um ()=cp+ehy  Gu=Cim/EBim.

In every block, we use a finite series {with suffickent number of multipoles
for the system of the following functions (=ee [8]):

LHENN B AT S T

= s 4+ 1)(VC2) " LIVCr) expling),
whieae ['() is the Euler ganuma-function, [,(r) Is the modified Bessel function,

r= f?’ + 'F. and = apctan gl

The local displacements U and u'** {in the block with the mimbes £
are coupled to the displacements of adjacent blocks by a particular variaoe
of the least square method for a multi-hlock system (sec [8]); the condithons
{11a}-{12c) are enforced by the same mothod. Some examples of the tension
distribution are presented in Figs. 3 and 4. The parameters of the nelasion
are taken as follows; the major axis of the ellipse @ = 142, the minor axis of
the eflipse b = (05, 0.3) ¢, where ¢ = (0.9, 0.7, 0.5) and the parameters of
the coll are L= 1 and H = 1.2

In Fig, 3, the tension patterns are depicted which belongs to the elassicil
mwodel The first pattern corresponds to 2.4 ji,,, the others correspond to the
increment 1.2 ju.. The corresponding tension patterus sssociated with i
cobieston fhelds are presented in Fig. 4

As ean he seen, the pattern of distribution differs essentially from thi
pattern carresponding to the classical model. This is due to the presenee of
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-

=

© Fig. 3 Examples of the classicnl tension distributions o, (1) = (25 + 4)

W = 1 i/
= BN

T

- ‘"‘-ﬂ.‘ ~
ﬁ"-. {2\ /] e & -
. )
i . %
mr” | S Ny ] _._F,.“"" = e S
H_,/ . y, S —-I

ig. 4. Exnmples of tonsion distributions o, (R} in the complete problem

the eohesion component o in the complete problem (0}, (10). The change
in the stress-stealn state leads to the change in the balance of the potential
'prhmuuthehuh;ﬂummdlhnuulrh.hlmm.thuﬁﬁnmmd
strength parameters of a cell as a whole may vary. It seems plausiblo that an
‘accnrate pstimation of these offects should be performed for the determination
of the parameters of the models.
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