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Abstract In the present research work the mnterphase
javer model is developed as a continuum media with
local cohesion and adhesion effects. By the model it
was found that these effects can help to understand/
predict macro/micro mechasnics of the material, if the
houndary conditions and phase effects are modeled
acroes the length scales. This paper deseribes the
Kinematics of continuum media, the formulation of
governing eguations {fupdamentals) and the statement
of boundary conditions for multi-scale modeling of the
material. An approach and the model has been vali-
datad to predict some basic mechanical properties of a
polymeric matrix reinforced with nanoscale particles/
fibres/tubes (including carbon nanotubes) as a function
of size and also dispersion of nanoparticles. Presented
mathematical model of an interphase layer allows
estimating an interaction around and nearby mterfaces
of nanoparticle and material matrix. Using these
approaches the prediction methodology and modeling
tools have been developed by numerical simulations
and analysis of the mechanical propertics across the
tength scales. Results of the work will provide a plat-
form for the development and understanding of
nanoparticle-reinforced materials that are hight-weight,
vibration and shock registant.
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{ntroduciion

Special properties of hyperfine structures {(rmdero and
nano-particles, nano-fubes} as well as mechanical
properties of new materials manufactured on the basis
of such structures are of great theoretical and practical
intercst. Non-classical mechanical phenomena and
wehavior of nanoparticle-reinforced composite mate-
rials are unknown in full measure by pow and require
further investigations. For a nanocomposife to be
designed into a structure. some kind of optimisation/
modelling is usually required to estimate its perfor-
matce in normal operation conditions. The availability
of suitable models can greatly help in this process. In
the paper [31] the variant of the nanoscale contimum
theory was elaborated on the bases of the notivn of
interatomic potentials of materials in the framework of
the continuym mechanics. This continoum theory
allowed to describe internal interactions on the level of
nanometers and was used for the developing of con-
stitutive models for SNWT-reinforced polymer com-
posites. Similar variants of the nanoscale continuim
theories [30. 41] were claborated on the basis of the
equivalent-continuum modeling technique and in view
of discrete nature of atomic Wwiteractions.

The study of consistent multiscale continuum model
is important from both fundamental and apphied
viewpoints, The developed model higher-order con-
tinuum theory can be used to £l up the gap between
approaches for the gradient elasticity {1, 2, 15] and
gradient plasticity [12, 13, 14]. Apphcations of the
model may include the modeling of ultra dispersed
gamposite ‘materials, foamy solids. dynamics of inter-
faces and surface offects, crackling. cavitation and
wrbulence ete.
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Advanced model of contintum mediums with kept
dislocations [20] may consider stress-strain flelds across
the length scales and the corresponding superficial
phenomena {16, 17,19, 21]. In these researches general
mathematical statement of corresponding boundary-
condition problem was determined by Lagrange’s
fupctional and corresponding Euler's eguations based
an the poundary condifions. An important aspect of
the madel is investigation of multi-scale cohesion and
adhesion sffects at the interfaces of nanoparticle- gin-
forced materials that are important for stress-strain
relation between material phases. The model has
heen successfully applied to prediction/modeling of
mechanical properties (Young miodulus} of nanoparti-
cle-reinforced polymeric composites as a function of
manoparticle’s diameter and dispersion taking into
account cohesion type interactions [16, 17} and both
cohesion and adhesion superficial interactions. [19. 211

Ome of the main goal of mechanics of composite
materials is the definition of the effective mechanical
propertics using the homogenisation technigue. The
problem of calculating the effective characteristics of a
composite consisting of a homogencous matrix and
small amount of ellipsoidal inclusions of different
elastic modulus is, in principle, solved in framework of
the classical theory of elasticity {24, 25, 30. 361 The
publications devoted to the study of effective charac-
teristics of composites for the fimte quantity of the
conceniration may be conventionally subdivided into
the following groups: the method of averaged strain
field (Mori-Tanaka method) of the matrix [24. 44, the
self-consistent method of effective matrix [7. 25], the
method based on the analysis of periodic structures [6,
26, 28, 33}, and the method based on the hypothesis of
three phases [32].

Note. that effect of reinforcement by nanoparticles.
however, was not finally investigated and requires
further computational tools. 1t was found. for example.
that ONT reinforcement of polymer matrix at 8.5%
volume rate may increase a modulus of clasticity by
40-60% [34, 35]. Model given by [35] cannot predict
effective modulus of elasticity and explain the effect of
substantial growth of mechanical properties of the
material [34]. Therefore. some advanced model s
reguired.

In the present paper 1o model of an interphase laver
an advanced continuum model with field of kept dis-
location is applied in mechanics of materials. This
model considers the cohesion and adhesion local
effects between nanoparticle and matrix as the length
scale effects. Tt is worth noting that the local interface

concentrations in the material and farge size of surface-
to-volume ratio that increase arca of contact between
ranoparticle and matrix. Using these approaches the
prediction methodology and modeling tools have been
developed by numerical simulations and analysis of the
mechanical properties across the length seales. So. the
generalized Eshelby solution is given and asymptatical
averaging te€hnique of homogenization is extended on
the higher-order continpum theory of the mediums,
which allow to take into account the specific properties
of the interphase layer at modelling of the compuasites
with micro- and nano-inclusions. An important aspect
of the model is investigation of multi-scale effects at
the interfaces of nanoparticie-reinforced materials that
are important for stress-strain relation between mate-
rial phases. An advantage of proposed approach is
computationally effective miethodology based on a
fendamental theory of continaum mechanies.

Mhritiscale model of continuous media

According to the kinematics variation principle £5,17,
18, 79}, a functional of material’s energy can be found
and then a set of force interactions at the mtroduced
kinematics relations is determined. Thus, the model is
totally determined by the number of kinematics refa-
tions and therefore. it may consider some linear
reversible stress-strain processes. We will define a
defectless Papkovich medium as a medivm with a
continuous vector potential of the distortion tensor of
deformation dy

R
iy (1.1)
ff (}Xj \ Z

the displacement vector RY is continuous and the dis-
tortion tensor dy, is a gencral sohution of the homoge-
neous equation:

.

0y Ay Gy 5 - 1o
T Zg(’} Qi — G2y sk e e rey 0 L];‘}
where the equation 2, + 163, determines a symmet-

rical part of the tensor f,;‘ and the eguation o}ﬁ i
determines its non-symmetric part: &, is the Kronecker
deltar ) is the vector of curls and it can be found as
B Sk D, Dige 18 the permutation symbol. s
a deviator tensor or deviatory strain: 2096, is a
spherical tensor: and 6 is amplitude of the spherical
tensor. ]

It is worth noting that the Eg. (1.1} states the kine-

matics relations betwesn twelve degrees of freedom vy,
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# o and R, of the model. In general case for base
madel we will consider the mediums with Kept disio-
cation (20, 22, In the case of defect-containing con-
tinuous medmm it is characterized by the non-
homogeneous Papkovich equations as follows

1
e P L L
Y B — 6 Finkhim 3 w7 == (£

[y
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ot

where gf‘w Fon 7 Ui ¢ 0 &7 ;}m.i'.}sm is the géﬁ(&fﬁl
tensor of curvatures of the model,

Continuous tensor of “inconsistencies™ of displace-
ments Iy given in Egs. {1.3] can be used as a tensor of
distocations density, see *9? In the defectless E‘enm%
gencous Papkovich medium the distortion tensor f{
mn,gzrabiaz since it can be determined from the Eq

by means of integration over the displacement

vecmr and the imtegrability conditions (1.2) are ful-
filled. On the contrary to that. for the Papkovich-
Cosserat medinm with defects, the distortion tensor of
deformation d;; can be represented in the general case

as a sum of two parts: the integrable part (d‘j , and the
non-integrable part (d7). In the case of non-defect
homogeneous Papkovich medivm a distortion tensor is
expressed by mathematical product of integration from
the Eq. (1.3). The solution of the above Papkovich Eq.
{1.3) with respect to 3 oy and 0 can be expressed as
the product of the following general solution of the
homogeneous Eg. (1.2} for d)(dy =
A1y i(igc‘iq— ~ % e ). and the partial solution Df thc
mm homogeneous Papkovich Eq. (1. 3} to be given in
the form as  di =db s di A&

VR L0P8 - 0 D). Partial solutions of non- h(}mo_
gemnm Papkovich equation with respect to the dis-
torfion tensor d‘ or with respect to factors of 7. c.s)‘f:
and & (that is {he same way) can be considered as
degrees of freedom that are independent dispiac&
ments. The distortion tensor uxpres%d by df =

i
+ 6“.;,- - r);‘ 4 can be considered as” ‘generalized

igo0 3

displacements” {“plastic distortion™ [9]). Smece the
“inconsisiencies” tensor Sy can be incorporated into
the “generalized displacements”™ by the following
clations:

i
=
S
s

'l = = .
i ;%— iy 0% Hinkdan Fuy T D

it can be referred as a tensor of ‘“g@ﬂ@raﬁmd strains”
for these “generalized displacements”

Using the Cosserat terminology, it can be written
{hai o Ty 35 the restricted curvature, and
W s a free curvature or spin. By the same way, it

can be found that 72 and #” is restricted strains, 7§
and 0% is free strains. The following differential
conservation law is valid for temsor ;@ 5
other words, the flux of tensor Zy through th@ arbi-
trary surface stretched over the chosen planar con-
tour s the invariant. Therefore. it can be chosen as a
measure of dislocations. It is important (o note that
ane of majr features of the Papkovich—Cosserat
continuous media is that it is not possible to describe
the birth or disappearance of dislocations in the
framework  of  these media  models  becavse
4b ByndF = 0. Therefore. the defects associated with
the conserved distocation tensor Zy cannot be born
or disappear.

In the works [16, 18, 29] the kinematical variational
method of modeling is formulated. In concordance
with it the kinematical connettions of the mediom are
defined, the virtual work of internal forces is postulated
as a virtual action of reaction force factors on the
kinematical connections (1.1). {1.4) peculiar 1o the
medium. This action is presented as a linear form of
variations of its arguments and can be integrated for
the conservative mediums. As a result the strain energy
is determinated. For the lincar mediums the potential
energy is being the quadratic form of one’s arguments.
For the mediums with kept dislocations such kine-
matical connections are the Papkovich’s inhomoge-
neous equations o use to free distortion, and
Papkovich’s homogencous equations for the con-
strained distortion. The last ones can be integraied in
the general form. The Cauchy's asymmetrical correla-
tions are the solution of the Papkovich’s homogeneous
equations for the constrained distortion. Thus.
according to the kinematical variational principle the
virtual action of the internal forces one should present
in the following form:

3 F IR 3 . 4z 51
[// 7 @ Suishily S 1140 Eg}' “j‘—ﬂfx}mm Ly
\ (}x; X |

(L5)

ere &L7 is the virtual work of the internal connee-
tions which is the linear form of its argument's varia-
tions; oy and my are a temsors of a Lagrange
multipliers, which in physical meaning are the reaction
foree factors, providing a fulfilment of the respective
kinematical connections.

Let’s present 60U in (1.5} as the linear form of one’s
argument’s variations. Using the mtegration by parts
we'll get the following expression in the ifems.
including the derivatives:
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(1.6)

gy dR; — it 3 e

Ky

For mediums without the dissipation of energy the
potential U exists, that the virtual action L7 in (1.6) iz
the variation of this potential:

//f UsdV [f {/L,}(,dl

7
Uy Le*(f Eﬂ Lo

(o

Note, that we consider the generalized medium
maode! with scale effects, which is not confiicied with
classical theory and known experimental data’s.
Because the displacement vector was excluded from
the Bst of arguments for the density of potential energy
in the volume Up and on the surface [y, Stating
some physical linearity of the model, the density of
potential energy U of the model {1.7) can be found in a
belinear gquadratic form of its own arguments of the
different tensor's dimensions. The constants in the
belinear quadratic form are, thercfore, physical con-
stants of the model and thus establish a generalized
equation of the Hook's law (constitutive relations)
for a Papkovich—Cosserat’s continuum model in the
following form:

¢ b 8¢
gy e, PRy e, R e,
v rf)‘(?ﬁ} COE i adz

s

Af;mn d,,,;

(')d;;_-

(1.8)

here oy are S{TEsses, M1 Gre Mmoment stresses in the
valume. gy are dislocation stresses, M;; are moment
stresses on the surface.

Ose should interpret the formulas {1.8) as & gen-
eralized Green's formulas for the volume and surface
force factors. These equations make possibie to write
the Lagrangian and find the Euler’s equations.:

sl (1.9}
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We used here the following equations nph, D pe = O
which is result of convolution of the symmetrical tensor
n, n, with the antisymmetric pseudotensor I, In

result, the list of arguments is determined by six “plain”
comporents of the free distorlion fensor ¢ APy~ 1,
)t Use =0 (% {3y = mpry}) and Eq. (E 9} gives the
correct variational formulation of the boundary problem
for the medivtns with kept dislocations. Note, that for the
investigated medium model in every ordinary point of the
surface we have nine boundary conditions. The analysis
of the governing equistions and the boundary problem as
whole makes possible to prove that general order of the
equations in respect to components of the displacement
veetor and the potentials for the components of the free
distortion is equal to eighteen. Se, the mathematical
fornmlation of the mvestipated model is consistent,
because nine boundary conditions for the boundary
problem of cighteenth order there are (please compare
with [23]. Generally for each of parts of the free distortion
fensor (Z:T?: 5. wFand 75, a.mordl.ﬁg}y the their own specific
scale effects are have place. These scale effects define the
specific length of internal interactions. Let's make the
common remark concerning structure of the solution of
the problem (1.9). It can be proved that the governing
equations of the boundary problem respect to the dis-
placement vector R, in general case can be writtet in the
form of the product of two operators: Ly and Hyy, Ly{Hy;
(R, vvhprc Li (L) 88 th ciaqqzcal Lame ()pgraicsr
e AL 6 b (po L (g, A are the Lame
Locfﬁcwns) and M;,( i morf, common operator, which
can e considered as generalized operator of Helmgohz
type (20]. Operator H,{...) defines the Jocal effects for
proposed particular variant of the gradient theory.

Lil..

Formulation of the interphase layer model

Within the framework of the multiscale model, a theo-
retical model of an interphase layer is obtained as par-
ticutar simplified case of the acncrai model of the
medinm with kept dislocations (1.9). To construct the
most simple gradient theory we assume that v, = = {, and
WE = dy W § = by 6, where # and oy are corresponding
constrained deformations, ¢; and b are constants. Other
words we assume that the lengths of the scale related
with % and F are proportional. These assumptions lead
to correct mathematical formulation for the mediums
with specific local cohesion and adhesive Interactions as
particular model of the general Papkovich-Cosserat’s
medium mode! with kept dislocations (1.9). After all
the mathematical statement of the simplified vanant
of the im:erp?ﬁa&e fayer model is completely determined
by the following equation for Lagrange functional and
variation equation:
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where ¢ 15 the volume of investigated body, 96 is the
boundary surface of the elastic body, A is the

work of external forces on ti displacement vee-
aaﬁa H T FR

1ot are the Lamoe coefficients: Cls zhe; p zystcai constant
that determine the cohesion interactions [171: the coef-
ficient B is responsible for the surface effects at cach
point of the surface within the tangential plane: the
cocfficient A is responsible for the interaction nermal to
the surface; D,;}R[R, = A fzzn;RJRf i Bi&; - nirgy R;R; is
the surface energy density associated with changes of
defect number due w deformation.

Stress state of the proposed model is define by the
following equations for the stresses oy and for the
moments my. (21)

e *)@5
T I e S R TN
f ag\? ) 3

{2404 /‘si
S A -
} .___Z:W{}k i

™
Rind

On any surface with a normal vector r;, vector of
forces can be determined using Eq. (2.2) as follows:

oy N
~f L2 /
Pz d 2uyyt ( -? g——/}} 16415 jz;mmfg i
- i
2 A) : “1; i
Tm:g,” H; ,[;,{;’5,{, Roh i Ty

[
< ~2;{{
i

and on the surface with a normal vector r;, moment of
vector is written in the following foron

]

° ad s
Fip il [ (24}

i dxg

here A is the Laplace operator.

Based on the vector Py, effective normal stresses in a
direction of a normal vector a, and effective shear
stresses in the tangent plane are established. Obviously
that ff;(éi:g ;) = L Then the normal vecfor is
expressad as: 4y« . T, and two components of tangent
components of stresses are equal tor Py {8y ~ mn). Note
that the stress state for praposed model of the interphase
fayer is described by the symmetrical stress tensor.

The a%&mptloﬁc introduced above (v = 0, and
W = ayo 0F = by B,y and by are constants) allow to
formulate the boundary problem for the mediums with
%nﬁciﬁc local cohesion and adhesive nteractions. Using
Eq. (2.1} we can write:

rg 1
[// {L, ALy )+ au | e ﬁg(y&}dv
1 '

i 3
= // ?(JM; DtR?\é{:E!
JJL B 1 7

3
ndF 4 (T~ PSR 1V =0

3G
{2.5)
where & 4, Ly (1) i@ the om-:rator of the classical
theory of u]astxcai’y ~hLglo 3+ gl ) is operator

defining the local cei}csmn type effects for proposed
gradient theory: dV'is the boundary surface element, g
ts the normal vector of the boundary surface; F; is the
vector of density of the external loads over the material
volume, T, is the vector of density of the surface Joad;
generalized forces M, and P; are defined on the surface
3G by the Bas. (2.3}, (2.4).

Both of coctficients A, B in Eqgs. (2.3}, (2.4) corre-
spond to the interactions of adhesion type. Surface
effects describe the local effects that are concentrated
near the material domain boundaries. To understand
the physical sense let's define displacement of cohesion
field. Let’s name a vector of the cohesion displacement
the following vector: ;= — hLy(Ry) = — &l + A}
w b ARy - if ¥ Using general statement (1.9)
we can receive the equations for a xu,mr function
u~CH, {14,3 + F =0, where Hy( )= Lru0
#3z(. . b Shnitarly we shall eater dbﬁﬁitiﬁﬂ of a vector
of classical displacements U/, It 18 possible 1o change a
sequence of action of operators. Then we sha!! recelve
the following d efinition of a vector I = HdR;)
[~k L.+ (iR, Obviously, ﬁh \fe{:mr i
satisfies to the classical cquations of balance: ,?.-,,»f
(U} + F, = 1. Taking into account definitions for U
and for w, it is possible to present the general schution
of the governing equations Ly{(H; (R)} + F; = D as the
following  decomposition R, = U, — u, Thus, the
boundary value problem {2.4) reprosents the couple

i
~‘5’
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roundary value problem for the classical solution and
the solution for cohesion fields model. Boundary con-
ditions in both cases are eross-linked and support each
other. Thus. the boundary value problem represents 2
coupled boundary value problem for the classical
solution ¢J; and a solution for cohesion field model w:
However, the boundary value proidem generally is not
divided. Tt is worth noting that cohesion inferactions
are expressed by new physical parametet of model C.
{n recent tesearches [17] it was shown that this
parameter s fracture factor and may be responsible for
cohesion mteractions, Estimation of numerical value of
¢ parameter can be pursued by an analytic solution of
an open crack at loading in normal direction. On the
other hand. as it was shown in [16, 21], the parameters
associated with coheston and adheston scale effects can
ke found as a result of solution of the identification
problem  using experimental  data  on effective
mechanical properties of materials,

Contact boundary problem

{et's consider the contact problem of two phases
(matrix and inclusion) and analyze the boundary value
problem (2.5}, Assume that on the surface considered
hodies the following relations have place Dy =40 In
other words superficial effects of adhesion  are
neglected. Note that introduced assumption is not of
fundamental importance but allow to simplify analysis
and procedure of the solution construction. The Euler
equation in variation Eq. (2.5) gives the following
gOVETIIngG differential equation of fourth order for
gradient continuum madel of cohesion field:

FLL(‘(-R} L F e Q, LIRY s gV R (i A VdivE,

LelRy = LRy~ CR,

where L(RY= Ly{(R) = gV {Rjdy+{ut 4}
differential operatar of the linear theory of clasticity,
i.c. operator of Lame equation. We can write also four
contact conditions on the border of inclusion-matrix
for conjugation of the general ficld of displacements R
and peneral forces fields:

s
]
Pl

here R‘ = R_; }ém is the jump of the B o the surface
of includion and so one,

First two conditions (3.2} determine the continuity
of the displacoment field R together with the first

& Springer

derivatives near the border of inclusion-matrix, last
two conditions are natural boundary conditions for
variational Eg. (2.5), which are the contineity condi
tions for moments ;’»3‘{,33{}?} and surface forces Psf\’
From structure of the differential operator {3.1) fal-
fows. that the general field of displacements Consists
from two flelds of displacement: Uand i Re= Ui
One displacément field [7 45 the classical fiekd of dis-
placements and satisfies the classical Lame equation of
the theory of elasticity: L.{ {73+ F = 0. Another field of
displacements il is the cohesion field and satisfies the
equation L(;{}é} p By, where Le(R)= ~CHy(R;)
s [y(R;) — Cdy(R;). These parts of the fields of dis-
placements can be allocated from the general field of
displacements with the help of Lame operator:

[ B 2 LiRY = oo L
kK 7 (] C‘f of

Thus, the problem (3.1), (3.2} for the eguation of the
fourth order is equivalent to a problem of the coupled
analysis for two equations of the second order deter-
mining the classical field of displacements U and dis-
placements of the cohesion field i, conjugated among
themselves trough four conditions (3.2 on the bound-
ary of inclusionimatrix. Cohesiot moments working i
three orthogonal divections, one of which is the external
normal A, and others two are any iwo tangential
directions ¥ and ¥, are defined by the following way:

V”;r‘R}\ {fwiﬁ(}é)”f}?: "v{z’s:(}.é.} {ﬂ/{;?(ﬁ’}x;‘t

{ (
i J

: { MRy (3.4)

here tensor ;&;f,—;(}%’”,‘— defines by Egs (24) ;"vf,-rj-{é}

- 38
e 7 [2;
EY 1O ”z"””(

E H {h o
(?(Ii’} = ivR. &; 1 Kronecker delta, 3 is the per
mutation symbol.

Surface forces PR} from the condition (3.2} can be
defined through classical surface forees pLn
{o,(Uyn,} and tangential cohesion moments by the
following formulas:

PRy - il + ijm}y;f,;g:é\}i; _ M,

My s i and
J ;

bz

i

“{dpr o FipHl

GOk 2 doulR)
e (i3 o e
A S
1
% Fp Figt + Ae D ,;m}j {0 — npty) (3.5}
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The Egs. (3.5) are another form of representations
of the sarface forces (2.3}, in which the classical part of
surface forces are extracted in explicit form.

On the basis of the Eq. (3.1}, (3.2) effective charac-
teristics of a composite materials are calculated taking
it account local effects. Hereinafter three approaches
will be developed: (1) the integral Eshelby formula [8]
will he received for matrix with isolated melusion: (31}
the generalized Bshe :iby solution for isotated inclusion
i matrix will be found and generalized Eshelby matrix
will be established; (ifi} the exact asvmptotic average
solution will be obtain on the base of the procedure of
asymptetic homogenization | [3} for composite materials
with periodic structure in framu»mrk of the gradient
model of inferphase fayer. For the solution of auxiliary
problems arising here and for numerical sinulation of
the stress-state in framework of the model of interphase
taver the block analytical- numerical method [37. 38, 39]
is used. This method allows to calculate effectively
auxiliary characteristics {COmponents of stress tensor,
energy in a cell, ete).

Integral Eshelby’s formula

To receive the integral Eshelby formula we will use the
Eshelby procedure [8]. It may be proved. that for a
problem (4.1). (4.2) has place the following integral rela-
tionship between integral in the volume (7 and integralon
the surface 3G for two arbitrary fields of displacements R
and Ry by analogue with the Green's formula;

/ L Lot Ry RodV = / PR RydV”

St a6

M (R) JR(’dV’ QE(R, Ry),

(/(J

where 4, = #,

TR NCINE
The rule of Einstein about summation op repeating
indexes i used, The integral relationship (4.1} is car-
ried out also in area with inclusion because on
houndary of inclusion-matrix the conjugation condi-
tions (3.2} are satisfed. From this representation the
gseneratized integral formula of Eshelby {10} 18
received. This formula is used for an estimation of the

strain encrgy in considered body with inclusion for the
gradient interphase model.

Let copsider the homogencous (F =) problem
{3.13, 3.2y in domain (7. The boundary a5 is loaded by
distributed  surface t(}m,: P{R} . Py, and by the
moments 6‘»1'(,; { R ¥ o My, Assume that displacement
R i3 the solution of such boundary problem. Lets
introduce paraliel with R also the fie id of displace-
ments By in domain (7 for the same boundary ¥ sroblem
without inclusion. Then the integral (41} fgr energy

E{Gy = E{Rﬁ} can be write in the following form
BG) = EfG) - =E(G),
E(G) / B(RGR - My By o4V

t (3FE I

A

where dV is the element of surface of the body G.
En{ Gy = EX{ Ry Ry} is the energy for the homogencous
pmhl;,m without inclusion, F'(G) is the increment of
energy in the body due toinclusion, which is the energy
of interaction for two stress-strain states mrrupamdmg
o twWo di%\}acemcnts fields R; and B e R R

App yma Eq 13 for a combination of felds Ry
and &' (R’ ------ : R R{;} in the area outside of inclusion we
can recetve:

F(Gy = 2E(Ry Ry~ 2E(R Ro)

- - - i R
5 [ BIRVRs - P(RyR M,,(R/dj E
[875)

4

N1-2 B
ﬁf[,,x(Re,}-"&—r;EdV

where T is the any surface around inclusion, in par-
ticular. it is the surface of inclusion {the normal vector
on I' is directed outside of inclusion).

Then. takma into account symmetry | of the hilincar
form F;R Rg} and using relation R = R Ry we
receive an integral formulae for an estimation of
encrgy increment due to change of the bomogeneous
cell on the cell with inclusion;

E(G) = EolG) - 3 E(G). 423
. - 8K,
EJKG} - / gtﬁRU% PIRGIR + ﬂf‘,wR,_{E{
Jo an
oL
. j’f)aSiR@; Q{{‘E dl{ﬂ- ‘42}
{ B 4.3
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The cell with inclusion has the same as homogencous
cell loading conditions. Equations (4.21{4.3) generalize
corresponding integral Eshelby's formula {8} on the
eradient modet of the interphase layer. In particular. if
the field of displacements R, corresponds to homoge-
neous deformations in which there is no cohesion
component i, the integral for an estimation of energy
hecomes simpler because Ry 7

It is proposed that the field of displacements. stres-
ses (surface forces) and cohesion moments in Egs.
{(4.2-(4.4} can be caleulated numerically using for
example the special analytical-numerical method.
which is developed in the present work. Then the Egs.
(4.2). (4.3) alfow to find the approximate estimation of
the effective moduli of matrix reinforced by inclusions
and take into account local interphase layer. Indeed
let’s consider for example the homogeneous ioading of
materials under tension. We can find the following
approximated equation for effective Young modulus:
b Mg = Eo/{lg - E'/2), where E, and E are
defined by Egs. (4.2}, (43) and can be caleulated
numerically.

Generalized Eshelby’s solution: Eshelby’s matrix

Let’s remind that Eshelby considered the deformation
problem  of isolated inclusion with matrix under
homogeneous loading on the infinity in framework of
the classical theory of clasticity. In case of single
inclusion subjected to the action of & uniform field, the
ctrains within the inclusion, ¢, refate to the remote
strain. o, as follows [10, 11, 25]

g, add
By T B

A gl PLERN y
Adipaty] A £,

here A is tensor of moduli of clasticity for the matrix
without inclusion, and Az is matrix of jumps of moduh
of the elasticity between inclusion and matriy. Strains
298 are the additional, or “restrained” straips within
the incluston, ., are the equivalent free strains. They
are ecarrclated by means of Eshelby’s tensor ﬁﬁ,,__m. as

follows:

Kl h?t’i}'}geﬁi’

where P = (x,, X2, X3} is some point m the considered
body, S}W is so-called Eshelby’s matrix.

The Eshelby matnx plays a fundamental role in
mechanics of composites because gives the effective
instrument  for  defisition  of effective  averaging
mechanical properties of composite materials {24, 25].
So. in compHance with the fundamental Eshelby's
methad in case of difute concentration of the inclusions
we can fnd the cffective mechanical properties of
composite 2 (the matrix with inclusion) using the
Eshelby’s matrix :

P PR K

[S}4

w70 (e ais) = (1eas)
N s . Fd

The expressions for the components of Eshelby’s
tensor in case of isotropic matrix are known [10. 11

-
LA
Pl

In our work we received the generalization of the
Eshelby's solution in framework of the nonclassical
gradient model of materials for matrtix and inclusien
which allow to take into account the local scale effects
concentrated near bounds of magix/inclusions. It was
established that the generalized matrix has the fol-
lowing form:

Sipa(P) = Sippal P

where SW{ Py s the classical Eshelby’s matrix and
Sipg (P} 15 an additional term due to cohesion field.
This generalization is based on the representation of
fundamental solution of spatial problem (3.1). {3.2) n
the form of difference of two fundamental solutions aof

classical and non-classical problems of elasticity:

]

RiP.P) = (Ry} = U[(P. Py — (PP, (s.

PP Py LU
L by 1
dup|P P 16mpll ) Ox0

i

PPy =t uglP P =
1 ) 54
Gl Gxiing |
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where w1 = 4/ L, K3 sv?i;z P = (xy. xg. x3)
and P = (1), ©/5,x'3) two poinls in the space. R;{P. P
is the vector of displacements, caused by the point force
applied in point P/ in x-direction (i.e. it is the gener-
alization of the fundamental sofution of a classical
problem in elasticity theory, Le. it is Somilliana tensor}.

The Eq. (5.2} follows from structure of operator
{3.1). Generalized Somilliana tensor (5.4} tends to
classical femsor {53} when - 0. The wolated
inclusion in infinity matrix (see Fig. 1) with cormmon
jump condition (3.2} and with requirement R Us,
P s« was considered. Here i is the displacement
corresponding to uniform stress-strain state with con-
stant stress deformation shy.

We have been constructed solution of this problem
on the base of {5.2)-(3.4) ixr the form of 3 simple layer
potential with known density:

LR R,

=
(]
et

where [0} are jumps of stress tensor on inclusion,
[l 1={ALY” G +20ulel, RE(P) is the restricted dis-
placements: in Eq. (5.5) integration carry out on the
curface of inclusion 96, and G is area of inclusion: £ is
any point of volume {the point of matrix or inclusion),
P is varving point on the surface of inchusion.

In accordance with (3.2} displacements RS(Pican be
submitted as decomposition on the classical and
cohesion camponents. It can be check up in compliance
with properties of (5.5) that the restricted displace-
ments R(P) and their normal derivatives arc contin-
wous, and also the cohesion moments :‘in’,;,;}f}é“} are
continuons if vy = v, and f, = . Thus, first three
conditions (3.2) are executed for considered ease. It
can be_found that Jast condition just gives necessary
jump igs‘(ﬁ’“}lg Oilyy for surface forces of the

rA0
y

constructed  solution, f%fter transformation formula
(3.5) with the help of Ostrogradsky-Gauss theorem
and after calculation restricted stress deformation &
{Py we obtain generalized Eshelby matrix S, (P} m
the form (5.7) with the following components:

Fig. 1 Inclusion as gpheroid in infinity matrix

?;;;)egif’ } sz'l;.! ‘P }C!ﬁx’gﬂ;«
8o 1 P) -+ G50 (P .
- - i (5.6
By ’
©dar e ) .
HLPY = / }}—%F Gy = J/ P PlaF 5.7
& o
‘.P} . Té{z}’:?{[)}(?é{mg‘
!’S’ii(ﬁ ﬁ{f’f & {‘;f-g} ;\{—{P> tf; gggP}
TPy o el IR s (3.8)
L Rrpe dnl ‘
A L
() = varphi(D. wy) s Wd})
p i i
GlPY = (Pt o @il (5.0

The matrix (5.6). corresponds to the classical solution
and coincides with the matrix received by Eshelby in
the work [10]. The new matrix Sy (3.8) corresporgds
to the cohesion field. This matrix is the correction ferm
to the Eshelby solution in the framework of considered
model of cohesion type interphase layer.

Explicit analytical formulas (5.6)-(5.7) define
behavior of the constructed solution in the matrix and
in the inclusion. Using Eqgs (5.6), (5.7) Eshelby has
heen investigated in detail the behavior of the classical
part of the solution U, which has i particular asymp-
totic on infinity as Alr®. He has shown also, that the
solution [/¢(P} gives the homogeneous field of defor-
mation inside inclusion of ellipsoid form.

The generalized solution {5.5) has another behavior
mside inclusion. Homoegeneous of deformation field
inside inclusion s broken due to cohesion part of the
solution (3.5). On the infinity solution saves the clas-
sical asymptotic Al°, because the cohesion part is
exponentially temds to zero when P — oo, Formulas
{5.6)-(5.9) can be used for homogenization of com-
posite materials within the framework of spatial model
of moment cohesion.

Asymptotic homogenization for gradient model

In according with a technrigue of asymyptotic homoge-
nization of processes in periodic media [3]. we consider
the Eq. (3.1), {32} in the infinite media with periodic
microinclusions (for example, of the spheroidal form,
Figs. 2, 3). We introduce together with slow variables
x={xy, X2, X3} so-called fast variables { ‘x. where £ 18
the characteristic size of micromnclusions {sec Fig 4}
and we rewrite system of the Egs. (3.1} in the matrix
form, assuming that interphase layer lays mto the cell:

@ Springer
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where Ay () is the matrix of Lame coefficients Az,
() = 5 (UHdgy 85 + Oy 5y ) 7 A (D18g, d4,, accepting
constant value [y 44 in inclusion, and constant value
{itm Am | in the matrix of the composite material,
C(Oy=u (CWE (L) is the cohesion field parameter, also
accepling piccewise constant value, (71 is the width
of an interphase layer in the matrix and in inclusion.
Then we can construct the formal asymptotic
decomposition of the solution (6.1) as a series on
degrees of geometrical parameter &, being the period of
microinclusions translating:
Rix.7y= SN MDYV,
Gt

To0 fmsthy i)

6.2)

where V(x) is the slow function (ie. solution of the
homogenized operator), N; ({) is the fast matrix func-
tions being recurrent solution of a chain of problems
on a cell of periodicity, { is the multi-index [3]. DiVix)
is the svery possible derivatives of the order { on slow
variables.

In decomposition {6.2) slow and fast variables are
divided. matrix functions N, ({} describe local behavior
of the solution i the cell of periodicity, the vector
function V{x) describes global behavior of the solution

and corresponds to the homogenized media with
offective characteristics (i.e. it is satisfied the eguation
with constant coefficients), The equations for N, {{)
and the homogenized egquation for Vixyis received by
standard technique after substitution (6.2) in (6.1,
applying a formula of differentiation of the complex

function dependent on slow and fast variables,
D x5 & . and reducing of members with

identical dcgret‘; ¢ in transformed formal asymptotic
decomposition to zero. The most important are (wo
first members in decomposition (6.2}, because they
describe a stress-strain state in the composite with
account of microstructere and contain effective chat-
acteristics of homogenized media:

(6.3)

were indexes L.k,j take on a values from 1 to 3.

The matrix coefficients Ak; correspond  to  the
homogenized clastic media (generally anisotropic} and
are calculated through periodic matyix functions NAD
ander the formula of averaging on a cell of periodicity
G {3k

7 . \

- FON VOH (O
A )+ A0y =52 - == ) )
{0 E; p ( s )

A g

»
o

(AT FFTEYY e ! e
H); = LN, {FlEn me@éiﬁ / T
o

Matrix functions of fast variables N, ({} are deter-
mined from the cquations on the cell of periodicity
with contact conjugate conditions (3.2) on boundary of
inclusions:

Fig. 3 Dnsirthution of the energy denaty of in the o

2 e
&1 Springer

o= a0yl

1 at different value of cohesion parameter
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.

Fig. 4 A composite material with periodic microinclusions

where E is the unique matrix. A is the vector of an
exiernal normal to a surface of inclusion. The auxiliary
problem (6.6) is reduced to 2 homogeneous problem of
moment cohesion (3.1 in the cell of periodicity with
metusion and with conditions of periadic jump along
directions 1. & or {5

Egs. (6.31-168) gives closed generalized sofution of
the homogenization problem in framework of the
asymptotical homogenization method [6].

1 ot’s introduce the vector functions Ry ;. which are
co}umn vectors of the matrix functions N;-+ (E =
{Ry,}. then these functions according to (6.6 satisfy to
the homogeneous Eq. (3.1), (3.2) inside the cell of
periodicity ¢ with inclusion. They will consist from two
component Ei’,«{f— = I':?"g,;- - Ty, first of which satisfies to
homogencous Lame equation, and the second to the
equation of cohesion field, and on the boundary of a
paraiietepiped & both of them satisfy to conditions of
periodic jump of the following kind:

Ui+ el =0

Ly U

(6.7}

Because evarvone of component {7y and U satisty
separately to the second order equation, then bound-
ary conditions (6.7} together with conditions (3.2} on
worder of inclusions uniguely define function [, and
function Uy, accurate to an any constant, Result. the
houndary problem (6.6) reduced to set of nine con-
nected boundary srablems respect to vector functions
Ry ;. This problem can be salved numerically. In pres-
ent work corresponding problem is sotved for partic-
plar plane problem with the atd of the special
analytical-numerical method.

Bloek analyfical-numerical method of numerical
modefing for gradient interphase layer

Here the block-analytical method of the boundary
problem is developed for gradient model of an inter-
phase layer. Special form of the solution is proposed
using the awallary vector potentials  satisfying
Helmboitz of Laplace equations. These potentials are
generalizations of known Neuber-Papkovich's repre-
sentations [27]. General scheme of the apalytical-
numerical method assumes splitting initial domain
& = UB, into system crossed only on the boundary. By
A B, =@, k#1 simply connected sub-domains
called blocks. Specific systems of functions and gen-
eralized Taylor serics are used for obtaiming of the
solutions in the each of blacks. The apprepriate theo-
rems determining an anafytical basis of a method are
formulated.

We can unigquely represent any solution of the non-
vniform equation  Lefil) = F by two coordinated
among themselves vector potentials, satisfying to spa-
tial Helmholtz equation [39]:

Col = S e s O 2y
i pNTE
(7.1)

We shall name these potentials as coordinated
potentials in some point Py of the inside area if 1 this
point any derivatives on variables w = {; + i{» and
z = {3 coincide:

Py @fPyy 9 1[a ss) S
WW vy 53 (52_1. ,(ﬁ)z L<men

(7.2}

The condition {3.2) uniguely determines potential 7
on the given potential /. and the contrary. The fol-
lowing theorem defines the common view of the solu-
fon.

Theorem 1 Any solution of the equation L g = F
can be uniguely submitied as

¥
[=3

ey

T U S AT P
Py = ;j{P} -;--—C:‘?dw[f'*gp} - FUPY

through rwo vector potentials f and [, satisfving
Helmbolrz Eq. (7.1), and covrdinaied among e
selves by the condition (7.2}

Direct substitution (7.3} into  the equation

LGty + F o 0 results in identity after transformation
formula o & fornn

‘gi Springer
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The theorem 1 asserts, that any solution of the
Lo{if)y + F o 0 can be submitted in the form {7.3) and
coordinated conditions (7.2 provide unigueness of
relation {7.3).

It ean be proved that for C — 0, F = 0 the right-
hand side of Eq, (7.3) gives the famous Neuber—Pap-
kovich representation for solutions of homogeneous
equation of the classical theory of elasticity:

o 1

Ny NG R
;11;“ e duil

3

I (Py =

whera 7 = Pol s the radius-vector in the point P from
the point Py, fo is the harmonic vector. ?‘ji; is the scalar
product of two vectors.

Thus, the solution of the problem on a cell of peri-
odicity {6.6). (0. 7Y is reduced to a finding of vector
potentials folP) and f(P), satisfying Laplace and
Helmboltz equations. The additional potential Py
uniguely determines by conditions (7.2}, These repre-
sentations are used in the block analytical-numerical
method applied for the solution of spatial problems of
moment cohesion on the cell of periodicity,

Let's discuss briefly the construction of solution in
each of blocks. Inside blocks the solution of the
homogeneons Eq. (7.1} is represented as series on
system of special functions @7 [38], similar to the
polynomials having singularity in mfinity point and
identically satisfying the homogeneous Eq. {(7.1)

AW 13 Er
(I?(P} ’ Z Z gﬁnm q);:z EP P{;} t b:z.r:xg);?(}) Pij-,\;

riml sl |
(7.5)
. Len{BF) 7 F NP
G)n“z}} - @)iﬁ{f)( w3 Al 3 R
£ LS ; [7! .
R e (A2 Ay, (1.6}

dzF

where 7, (1) is the modified Bessel function of first kind
4], e =0y il «” is the coefficient of the Helmholtz
equation.

The representation (7.5) is analogue of Tavlor series
for solution of the ilq. {7.1). and its eoefficients can be
caleulated with the help of differentiation on variables

ff‘; Springer

z and w. Tt is uneasy to be convinced in validity of
differential recurrent relationships:

gor T L »
w}m- v (R el ~;)w’i =m®T om A0,
iz ! Gw

aa7 {n— my—m— DO - @
v N . N G 1 3

S d{m + 1

These relationships allow to differentiate analytically
local representations {7.1) and to construct generalized
Taylor series for solution of the Eq (7.1). The fol-
lowing theorem determines the properties of the gen-
eralized Tavlor series (7.6}

Theorem 2 (generalized Taylor seriesy  Any soluiion
of the Eq. (7.1) can be writien in some vicinity of a
point Py €6 as converging series (7.3), (7.6), and
coefficients dy, and b, ., are caleuloted with the help of
differentiation of the solution & in a point Iy

1 SO
U = T
i) ! {f! ) F}“]‘} I St {)Z’é i
1 (P
[:.}’:m f}ni} e (1

miin — myl Gwmdzem

Theorems 1 and 2 are the theoretical basis of the block
analytical-numerical method in application to the
solution of the problem (60,67, (6 71

The harmonic potential fg 7 is introduced for the
classical component of fiekl of dmp acements Uy, and
pair of local potentials 99 and f¥ are introduced for
description of the field of displacements . in the block
B.. Potentials £+ and /8 are approximated by series
(7.5) on system of special functions (7.6} with the same
coefficients:

My n

- Re Z Z /

EERLERY

M, #n

f'ss:e’c? (P}« Re Z Z ,;

iy prpadd

=
¥

where PiPis the some point inside the block By, and
and x> are the cnrmspondmg parameters of the Eq
(6]}' [OE 'Vf(i:?;. el f’( :i’},i - A}.

Coordinated conditiop for potentials (7.2) are fuifiled
automatically on the basis of the theorem 2. because
series (7.7) have the same coefficients ASE which are

calculated with the help of differentiation on variables w

i

and z in the point sz . The harmonic potential fu
approximated by series (7.5, (7.6) atx = (}‘1&‘ by series

on system of the normalized spherical functions.
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Canjugation of local representations in blocks with
conditions (3.2) is carried out by means of set of
fonctionals of the least squares method simultaneously
sewing function and normal derivative on the bound-
ary between blacks. For the blocks adjoining to surface
of inclusion from the matrix and from the inclusion.
these functionals according to (5.6) have the following

VIEW!

T T
On

here §j; 1s the part of the surface of inclusion, delim-
iting blocks Bz and B, adjoining to boundary of
inclusion, Sy is the common part of boundary of blocks
By and By, laying strictly inside inclusion or in a matrix.
For blocks B, and B, not having the common bound-
ary zvith the inclusion, components with norm

|
!|| are absent. For the blocks adjoining to

border of the paralielepiped. these functionals
according fo conditions {5.7} have the following view:

T,

= R,

here Sy and 5; are boundaries of blocks By and B,
adjoining 1o the parallel sides of the cell of periodicity
and connected among themselves by a conditon of
parallel fransition along the corresponding coordinate
axis: oL 4, and 4. @] arc corresponding values of
local functions on boundaries S, and S, It is supposed.
that block structure of the cell is arranged in such
manner. that the parallel sides of the cell are divided by

adjoining blocks so, that to each boundary 5, there will
be a parallel boundary S,

The condition of minimization of the set of func-
tionals above gives the block system of linear equations
for caleulation of unknown coefficients in decomposi-
tion (7.3).

The developed analytical-numerical method is used
for salving of the homegenization problem (6.4)-(6.6}.
This method can be used also for estimation of the
effective mechanical properties on the base of the
integral Eshelby's formulus (4.2)-{(4.4).

Numerical results

Comparative calculations on a rectangular cell with the
sizes Lx H are presented for the problem (3.1). {3.2)
befow, using the block analytical-numerical method.
The problem of the unidirectional tension along the
longitudinal axis for the cell with inclusion (x; was
considered. Tn Figs. 3, 5, 6 numerical results are given
for the cell with inclusion of the round form with the
radius 0.4 located in the center of a rectangular matrix
with the sizes L =2 and # = 1.2. Values of Poisson
coctlicients and shear modules in a matrix and inclu-
$IOn are v, = vy = 0.3, i/, = 2. Influence of the
width of interphase layer /y on distribution of stresses
and density of energy in the matrix and inclusion is
investigated.  Distributions  of density of energy
and normal stresses oy in the cell with circular
inclusion at different value of coheston parameter
{fp = 0.1, 0032, 0} are shown in Figs. 3 and 3. Com-
parison of the stress-strain state in the cell for the
gradient model of the interphase layer and for the
classical problem, {{y — 0} is given.

We can sec the effect of the redistribution of the
encrgy between the matrix and inclusion in Fig. 3. For
the classical problem the enecrgy is basically concen-
trated in the matrix. Gradient model gives the con-
centration effect of the energy in the rigid inclusion.

It is shown, that at certain geometrical and mechan-
ical parameters additional loading of a rigid phase takes
place. Thus the phase with smaller rigidity unloads
{Fig. 5). As a whole it results in redistribution of stress
state in components of a compesite. Redistribution of
deformation energy together with significant contact
Zones in nanc-composites also allow to explain the ef-
fect of increasing of effective modulus for the compos-
ies reinforeed by rigid micro- and nano-inclusions.
Effect of energy redistribution gives a basis for quali-
tative explanation of the increasing effect of the wlie
mate strain in materials (inchading metal alloys), if they
are modified by introduction of rigid nanoinclusions,

%a Springer
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Tig. 6 Distribution of the dilatation function

Distribution of the dilatation function 6(R) is pre-
sented in Fig. 6 at the same values of the cohesion
parameter. Effect of changing of the width of the
interphase laver and also effect of smoothing of the
solution near to the boundary of inclusion from
patameter of the gradient model [y are observed in
Fig. 6.

By the block analytical-numerical method have been
calculated effective characteristics (6.4), (6.5) (with
taking into account of not local effects) for a compaosite
material with factor of volume fraction # = %16 and
with periodically repeating circular inclusions. The
problem {6.6). (6.7) on upit square with circular
incluston of radius 0.25 was considered. This case cor-
responds to composite materials with factor of volume
fraction # = z/16. Parameters of the matrix and inclu-
sion are varied within the range: G0 </, <15,
ve = vy = (13 The width of interphase layer was con-
stant and equal 7, = 0.06 in the matrix, [, = 0.01 in the
inclusion. The matrix of effective cocfficients A i in this
case corresponds to the orthotropic matenal with three
homogenized elastic modulus. Comparative calcula-
tions of the effective modulus ,-;igm = E and shear
modulus Aip; i and corresponding coefficients fE;;
and jy, for the classical problem {without cohesion
fieldy have been fulfilled. On Fig. 7 results of calcula-

O oo
i opringer

tions are submitted. Resuits of homogenization
at g < pp, practically coincide with the classical case.
Sufficient growth of homogenized Young modulus E
{up to == 20% at gy 'y, = 15)is observed when g7 > 10,
At the same time we have the small growth of
homogenized shear modulus & {on 9% at gy /., = 15}
So, e have effect of increasing of rigidity of the
composite material for rigid inclusions gy /p,=15} due
to the interphase laver. The shear effective modulus 18
changed slightly. More significant reinforcement effect

Elastic mrodoius

H ;
: [,

o 3 6 S 12 15

Fig. 7 Homogenized elastic modulus
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can be achicved due to greater sizes of the interphase
favers and elongated form of spheroidal nolusions
{geometrical factor),

Conclusions

Formal theoretical straip gradiem model of the
interphase laver with Jocal cohesion and interfacial
properties was  proposed. Generalized  Eshelby's
solution and asymptotical averaging techaique of
homogenization were extended on the higher-order
model, The effective the block-analytical method of
the boundary problem was developed for gradient
model of an interphase laver. Using these approaches
the prediction methodology and modeling tools have
been developed by numerical simulations and
analysis of the stress-strain-stress and mechanical
properues across the length scales.
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