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FOREWORD

This volume contains the development of a summary note on the Théorie de I’action
euclidienne that APPELL has seen fit to introduce in the 2" edition of his Traité de
mécanique rationelle. The reproduction of an appendix to the French edition of the
Traité de physique of CHWOLSON, explains several peculiarities of the editing and the
reference that we make to a prior work on the dynamics of the point and rigid body,
which is likewise combined with the work of the Russian savant. We profited from that
new printing by correcting several mistakes in our text.

We do not seek to actually deduce all of the consequences of the general results that
we will arrive at; throughout, we strive only to rediscover and clarify the classical
doctrines. In order for this sort of verification of the theory of the Euclidian action to
appear more complete in each of the parts of our exposition we will have to establish the
form that the equations of deformable bodies take when one is limited to the
consideration of infinitely close states; however, this is a point that we have already
addressed, with all of the necessary details, in our Premiere mémoire sur la Théorie de
[’¢élasticité that we wrote in 1896 (Annales de la Faculté des Sciences de Toulouse, Tome
X). We suppose, moreover, that the masterful lessons of G. DARBOUX on the Théorie
générale des surfaces are completely familiar to the reader.

Our researches will make sense only when have shown how one may envision the
theories of heat and electricity by following the path that we follow. We dedicate two
notes in tomes I and IV of the treatise of CHWOLSON to this subject. The subdivision,
to use the language of pragmatism, appears to be a scientific necessity; nevertheless, one
must not lose sight of the fact that it solves grave questions. We have attempted to give
an idea of these difficulties in our note on the Théorie of corps minces, published in 1908
in the Comptes Rendus de 1’Académie des Sciences and whose substance was also
indicated by APPELL in his treatise.

E. & F. COSSERAT
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THEORY

OF

DEFORMABLE BODIES

By Messrs E. and F. COSSERAT

I. - GENERAL CONSIDERATIONS

1. Development of the idea of a continuous medium. - The notion of a deformable
body has played an important role in the development of theoretical physics in the last
century, and FRESNEL (') has to be regarded as the equal of NAVIER, POISSON, and
CAUCHY (®) as one of the precursors to the present theory of elasticity. At the time of
these savants, under the influence of Newtonian ideas, one considered only discrete
systems of points. With the memorable research of G. GREEN (%), continuous systems
of points appeared. One has since attempted to enlarge the ideas of GREEN, which are
insufficient to give the theory of luminous waves all that it requires. In particular, LORD
KELVIN (4) is associated with defining a continuous medium in which a moment may be
exerted at any point. The same tendency has been attributed to the school of
HELMHOLTZ (5), and the contradiction, due to J. BERTRAND (6) in regard to the
theory of electromagnetism, is quite characteristic. One may return to the origin of this

" FRESNEL. - Oeuvres complétes, Paris, 1886; see the introduction by I. VERDET.

> See ISAAC TODHUNTER and KARL PEARSON. - A History of the Theory of Elasticity and the
Strength of Materials, from GALILEI to the present time, Vol. I, GALILEI to SAINT-VENANT, 1886;
Vol. II, Part I and II, SAINT-VENANT to LORD KELVIN, 1893. This remarkable work contains a very
complete and very precise analysis of the work of the founders of the theory of elasticity.

> G. GREEN. - Math. Papers, edited by N.M. FERRERS, facsimile reprint, Paris, A. Hermann, 1903.

* LORD KELVIN. - Math. and phys. Papers, volume 1, 1882; vol. II, 1884; vol. III, 1890; Reprint of
Papers on Electrostatics and Magnetism, 2™ ed. 1884; Baltimore Lectures on Molecular Dynamics and the
Wave Theory of Light, 1904; W. THOMSON and P.G. TAIT, Treatise on Natural Philosophy, 1* ed.
Oxford 1867; 2™ ed. Cambridge 1879-1883.

5> HELMHOLTZ. - Vorles. iiber die Dynamik diskreter Massenpunkte, Berlin 1897; Vorles. iiber die
electromagnetische Theorie des Lichtes, Leipzig 1897; Wiss. Abhandl., 3 vol. Leipzig, 1892-1895.

® J. BERTRAND. - C.R. 73, pp- 965; 75, pp. 860; 77, pp. 1049; see also H. POINCARI, Electricité et
Optique, 11, Les théories de HELMHOLTZ et les experiences de HERTZ, Paris, 1891, pp. 51; 2" ed. 1901,
pp- 275.



2 Mechanics of Deformable Bodies

evolution, which was, on the one hand, the concepts that were introduced in the theory of
the resistance of materials by BERNOULLI and EULER (7), and, on the other hand,
POINSOT’s theory of couples (*). One is therefore naturally led to unite the various
concepts of deformable bodies that one considers today in natural philosophy into a
single geometric definition. A deformable line is a continuous one-parameter set of
triads, a deformable surface is a two-parameter set, and a deformable medium is a three-
parameter set (0;); when there is motion, one must add time t to these geometric
parameters p; . As one knows, the mathematical continuity that one supposes in such a
definition leaves the trace of an invariant solid unchanged at every point. As a result, one
may anticipate that the well-known moments that have been studied in line and surface
elasticity since EULER and BERNOULLI, and which LORD KELVIN and
HELMHOLTZ have sought to find in three-dimensional media, will appear in the
mechanical viewpoint.

2. Difficulties presented by the inductive method in mechanics. - The primary
form of mechanics is inductive; this is what one neatly perceives in the theory of
deformable bodies. This theory imprinted propositions that relate to the notion of static
force on the mechanics of invariable bodies, which one applies by the principle of
solidification; next, the relation between effort and deformation was established
hypothetically (generalized Hooke’s law), and one sought, a posteriori, the conditions
under which energy is conserved (GREEN). A century ago, CARNOT ) pointed out
the problem with that method: that one constantly appeals to a priori notions and that the
path that one follows is not always certain. Indeed, the static force has no constructive
definition in our classical form for mechanics, and the importance of the revision that
REECH (') has proposed in regards to that in 1852 has remained largely unrecognized

7 See TODHUNTER and PEARSON. - Op. cit.

¥ AUGUST COMPTE. - Cours de Philosophie positive. - 5" ed. Paris, 1907, Tome I, page 338: “No matter
what the fundamental qualities of the conception of POINSOT that relate to statics may be in reality, one
must nevertheless recognize, it seems to me, that it is, above all, essentially destined, by its nature, to
represent the quintessence of dynamics; moreover, in regard to that, one may be assured that this
conception has not exerted its ultimate influence up to this point in time.”

o CARNOT, in his 1783 Essai sur les machines en général, who foresaw in 1803, les Principes
fondamentaux de I’équilibre et du mouvement, sought to reduce mechanics to precise definitions and
principles that were completely devoid of any metaphysical character and vague terms that the philosophers
dispute to no avail. This reaction took CARNOT a little too far, since it led him to contest the legitimacy of
the notion of force, a notion that was obscure according to him, and for which he would like to substitute
the idea of motion exclusively. By the same reasoning, he would not accept as rigorous any of the known
proofs of the force parallelogram rule: “the very existence of the word force in the stated proposition
renders this proof impossible by the very nature of things.” (Cf. COMBES, PHILLIPS, and COLLIGNON,
eds., Exposé de la situation de la mécanique appliquée, Paris 1867).

' F. REECH. - Cours de Mécanique, d’aprés la nature généralement flexible et élastique des corps, Paris
1852. This work was written by the illustrious marine engineer in order to revise the teaching of mechanics
at I’Ecole Polytechnique. His ideas have been discussed further by J. ANDRADE, Lecons de mécanique
physique, Paris, 1898, and by marine engineer in chief, MARBEC, in his elementary course in mechanics
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up to our present time. Perhaps this is due to the considerable uncertainty that elasticians
have about making Hooke’s law one of the rational foundations. Analogous reservations
alrle, moreover, manifest in almost the same form in all of the other domains of physics
).

To avoid these difficulties, HELMHOLTZ has attempted to construct what one calls
energetics, which rests on the least action principle and on the same idea of energy; force,
whatever its origin, then becomes a secondary notion of deductive origin. However, the
principle of a minimum in natural phenomena ('*) and the concept of energy (*°) itself are
things we replace on account of the defects of the inductive method. Why a minimum,
and what definition can be given to energy if one would have not merely a physical
theory, but a truly mechanical theory? HELMHOLTZ does not appear to have responded
to these questions. Nonetheless, he has contributed more completely than anyone before
him to establishing the distinction between two notions that appear to agree in classical
dynamics: energy and action. We believe it is the latter that we must begin with in order
to describe the viewpoint of HELMHOLTZ with full precision, and to give mechanics,
or, more generally, theoretical physics, a perfectly deductive form.

3. Theory of the Euclidian action. - When one is concerned with the motion of a
point, the essential element that enters into the definition of the action is the Euclidian
distance between two infinitely close positions of the moving point. We have previously
shown (14) that one can deduce all of the fundamental definitions of classical mechanics
from this notion alone, such as those of the quantity of motion, of force and of energy.

We actually propose to establish that one may follow an identical path in the study of
static or dynamic deformations of discrete systems of points and of continuous bodies
and that one thus arrives at the construction of a general theory of action on the extension

at I’Ecole de Maistrance de Toulon (1906). See also J. Perrin, Traité de Chimie physique, les Principes,
Paris 1903.

""" The remarks of LORD KELVIN, in his Baltimore Lectures pp- 131, on the work of BLANCHET, is
particularly interesting in this regard; he points out that POISSON, CORIOLIS, and STURM (C.R. 7, pp.
1143), as well as CAUCHY, LIOUVILLE and DUHAMEL (1841) have accepted the 36 coefficients that
BLANCHET introduced into the generalized Hooke law without objection. LORD KELVIN has also
argued against WEBER’s law of force at a distance from the same viewpoint in the 1* edition of Natural
Philosophy. More recently, the application of the static adiabatic law to the study of waves of finite
amplitude was criticized by LORD RAYLEIGH for the same reasons, and one knows that HUGONIOT has
proposed a dynamic adiabatic law.

"2 MAUPERTUIS himself has warned of the danger of the principle that he introduced into mechanics
when he wrote in 1744: “We do not know very well what the objective of Nature is, and we may
misunderstand the quantity that we will regard as its cost in the production of its effects.” LAGRANGE
first had the intention of making the least action principle the basis for his analytical mechanics, but, much
later, he recognized the superiority of the method that consisted of considering the virtual works.

3 HERTZ, Die Prinzipien der Mechanik, etc., 1894; see the introduction, in particular.

' Note sur la dynamique du point et du corps invariable, Tome I, page 236.
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and the motion, which embraces all that is directly subject to the laws of mechanics in
theoretical physics.

Here, the action will likewise be a function of two elements that are infinitely close
elements, both in time and in the space of the medium considered. Upon introducing the
condition of invariance into the groups of Euclidian displacements and defining the
medium that we indicated in section 1 the action density at a point will have the same
remarkable form as the one that we have already encountered in the dynamics of the
point and the invariable body. With the notations of the Lecons of DARBOUX, let (&,
ni, &), (i, qi, i) be the geometric velocities of translation and rotation of the elementary
triad, and let (&, n, &), (p, g, r), be the analogous velocities relative to the motion of the
triad. The action will be the integral:

.[tz.[..-'[W(pi,t;gi’ni CisDirqi &M, pq,r)dp, - dpi,- - dt.

It will suffice to consider the variation of that action if we are to be led to the
definition of the quantity of motion and to those of the effort and the moment of
deformation, of force and external moment, and finally, to those of the energy of
deformation and motion, by the intermediary of the notion of work.

In that theory, statics becomes entirely autonomous, which conforms to the views of
CARNOT and REECH. For this, one will have to take only an action density W that is
independent of the velocities (& 7, ) and (p, ¢, r), i.e., to consider a body without
inertia, or again, a body endowed with an inertia, but on the condition that we regard the
deformation as a reversible transformation in the sense of DUHEM. On the other hand,
upon appealing to the notion of hidden arguments one will recover all of the concepts of
mechanical origin that are employed in physics. For example, those of flexible and
inextensible line, flexible and inextensible surface, and of invariable body, as well as the
less particular definitions that have been proposed for the deformable line from D.
BERNOULLI and EULER up to THOMSON and TAIT, for the deformable surface from
SOPHIE GERMAIN and LAGRANGE up to LORD RAYLEIGH, and for the
deformable medium from NAVIER and GREEN up to LORD KELVIN and W. VOIGT.

Upon envisioning deformation and motion at the same time one will arrive at the idea
that contains d’ Alembert’s principle in a purely deductive manner, a principle that relates
only to the case where the action of deformation is completely separate from the kinetic
action. Finally, if one suppose that the deformable body is not subject to any action from
the exterior world, and if one introduces, in turn, the fundamental notion of isolated
system, of which DUHEM ("), and subsequently LE ROY (*°) have seen the necessity in
the rational construction of theoretical physics, one will be naturally led to the idea of a
minimum that HELMHOLTZ took for his point of departure, at the same time as the
appearance of the principle of the conservation of energy, which is at the basis for our
present scientific system.

"> P. DUHEM. - Commentaire aux principes de la Thermodynamique, 1892; la Théorie physique, its objet
et sa structure, 1906.

' E. LE ROY. - La Science positive et les philosophies de la liberté, Congrés int. de Philosophie, T. 1,
1900.
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Apparently, one will thus ultimately avoid all of the difficulties, as well as the trial and
error of inductive research, as we have previously said.

4. A critique of the principles of mechanics. - In the form that we just sketched out,
the theory of Euclidian action makes a primary contribution to the critique of the
principles of mechanics.

Its generality permits us to foresee that there are singular phenomena for the action of
the motion, as well as in the deformation of the extension; for example, the speed of
solids in the plastic state or when close to a rupture, and that of fluids under great efforts
(). Under ordinary circumstances, this generality may be reduced by the consideration
of states that are infinitely close to the natural state; this is a point that we discussed in
our preceding note.

However, one may also suppose that one or more dimensions of the deformable body
becomes infinitely small and envision what one might call a slender body ('*). This
notion was developed in 1828 by POISSON and also, a little later, by CAUCHY; their
objective, as of all of the elasticians that were occupied with that arduous question later
on, was to establish a passage between the distinct theories of bodies of one, two, and
three dimensions. One knows that one very important part of the work of BARRI de
SAINT-VENANT and of KIRCHHOFF is attached to the discussion of the research of
POISSON and CAUCHY. Nevertheless, these savants, and later, their disciples, have not
extricated themselves from the veritable difficulty of the question. This difficulty
consists in the fact that generally the zero value of the parameter that was introduced is
not an ordinary point, as was assumed by POISSON and CAUCHY , nor even a pole, but
an essential singular point. This important fact justifies the separate study of the line, the
surface and the medium that is found in the present work (19).

In concluding these preliminary observations we remark that the theory of the
Euclidian action rests on the notion of differential invariant, taken in its simplest form. If
one enlarges this notion in such a manner as to understand the idea of a differential
parameter then modern theoretical physics appears as an immediate prolongation of
mechanics, properly speaking, fo the Eulerian viewpoint, and one is naturally led to the
principles of the theory of heat and to present electric doctrines. This new field of
research, in which we commence to enter into the deduction of the idea of the radiation of
energy from the consideration of deformable bodies, will be explored more completely in
an ultimate work. We may thus introduce a new precision into the views of H.

7 E. and F. COSSERAT. - Sur la mécanique générale, C.R. 145, pp. 1139, 1907.
" E.and F. COSSERAT. - Sur la théorie des corps minces, C.R. 146, pp 169, 1908.

' Tt is true that the interest and the importance of the theories of the deformable line and surface are poorly
appreciated nowadays; there is no place for them in the Encyclopédie des Sciences mathématiques pures et
appliquées, which is presently published in Germany. W. THOMSON and TAIT are guarded about
omitting them from their Natural Philosophy, and they are presented before the theory of the elastic body
in three dimensions; similarly for P. DUHEM, Hydrodynamique, Elasticité, Acoustique, Paris, 1891.
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LORENTZ (*°) and H. POINCARE (*') on the subject of what one calls the principle of
reaction in mechanics.

* H. LORENTZ. - Versuch einer Theorie der electrischen und optischen Ersheinungen in Bewegten
Korpern, Leiden 1895; reprinted in Leipzig in 1906. Abhandl. gber theoretische Physik, 1907; Encyklop.
Der Math. Wissenschaften, V,, Elektronen theorie, 1903.

*! H. POINCARE. - Electricité et Optique, 2" ed., 1901, pp. 448.



II. - STATICS OF THE DEFORMABLE LINE

5. Deformable line. Natural state and deformed state. - Consider a curve (M)
that is described by a point My whose coordinates xo, yo, Zo With respect to the three fixed
rectangular axes Ox, Oy, Oz are functions of the same parameter, which we suppose in
the sequel to be the arc length sy of the curve, measured from a definite origin in some
definite sense. Add to each point M, of the curve (M) a tri-rectangular triad whose
axes M x;,M,y,,M,z, have the direction cosinesa,,a ., ByBsBo>VosYosVas
respectively, with respect to the axes Ox, Oy, Oz, and which are functions of the same
parameter sp.

The continuous one-dimensional set of such triads M x,y,z, will be what we call a

deformable line.
Give a displacement MM to the point M, . Let x, y, z be the coordinates of a point M
with respect to the fixed axes Ox, Oy, Oz. In addition, endow the triad M x;,y,z, with a

rotation that will ultimately make these axes agree with those of a triad Mx'y'z that we
affix to the point M. We define this rotation upon giving the axes Mx',My',Mz' the
direction cosines a,a’,a",B8,8'.8",y,y ,y" with respect to the fixed axes Ox, Oy, Oz.

)

The continuous one-dimensional set of triadsMxyz will be what we call the

deformed state of the deformable line, which, when considered in its primitive state, will
be called the natural state.

6. Kinematical elements that relate to the states of the deformable line. - Suppose
that sy varies and that, for the moment, we make it play the role of time. Upon employing
the notations of DARBOUX (**), we denote the projections of the velocity of the origin
M, onto the axes M x;,M,y,,M,z,by &, nmo, &, and the projections of the velocity of

o1t

instantaneous rotation of the triad M x,y,z, onto the same axes by po, qo, 7o . We denote

o1t

the analogous quantities for the triad Mxy'z’ when one refers it, like the triad M x,y,z, , to

the fixed triad Oxyz by & 7, £, and p, q,r.
The elements that we introduced are calculated in the habitual fashion; in particular,
one has:

** G.DARBOUX. - Legons sur la théorie générale des surfaces, T. 1., Paris, 1887.
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ap dy
§=adx+a’dy +a”dz, P=2Vd—=—2/”d—’
ds, ds, ds, 5o 5o
dx ’ dy ” dZ d}/ do
1 = + + , 2 =) a—=- —_—,
O bt i R P Yo
dx , dy " dZ do d/)’
g=7 +7 +Y ) = - zF
ds, ds, ds, r 2/3’ ds, a ds,

With these quantities, the linear element ds of the curve described by the point M is defined by
the formula:

ds> = (&> +n° +c7)ds, .

Denote the projections of the segment OM onto the axes Mx',My',Mz'by x',y’,z’, in such a
way that the coordinates of the fixed point O with respect to these axes are -x',—y',-z'. We
have the well-known formulas:

! ! !

£~ gz +ry =0, n—dl—rX’+pZ’=0, s‘—d—z—py’+qf=0,
ds, ds, ds,

which give the new expressions for & 7, &

7. Expressions for the variations of the velocities of translation and rotation of the triad
relative to the deformed state. - Suppose that one endows each of the triads of the deformed
state with an infinitely small displacement that may vary in a continuous fashion with these
triads. Denote the variations of x,y,z;x,y.z5a,a',---,y", by &, Oy, o,
ox',0y', &', da,0a’,...,0y" respectively.  The variations da,0a’,---,0y" are expressed by
formulas such as the following:

oa = BIK' -ydl’,

by means of the three auxiliary variables oI',6J',0K',which are the components of the well-

known instantaneous rotation attached to the infinitely small displacement under consideration,
relative toMx',My',Mz'. The variations dx, dy, dz are the projections of the infinitely small

displacement experienced by M onto Ox, Oy, Oz; the projections d'x,d'y,d'z of this displacement
onto Mx',My',Mz' are deduced immediately, and have the values:

6) Ox='+70'-yOK', O7=0y+x0K -7,  Sz=5+ydl —x'K'

We propose to determine the variations o0&, on, 6, dp, dq, or that are experienced by & », &, p,
q,r. From formulas (2), we have:
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dp = Z(j—ﬁéywd(sﬁ :

o = Z[z—z(sﬁmd&“

5 Z(d_yéamd_ér

ds,

ds,

)

ds,

ds,

If we replace da by its value BOK'—yd/',and da',---,0y",by their analogous values,

then we get
(7) (5p=d§[ +q0K' -rdl’, oq =
ds,
or = dok +pol'-qdl’,
So

!

+rol' - poK',

So

Similarly, formulas (4) give us three formulas, where the first one is:

OF = dox
ds,

+q0z -roy’' +7'0qg-y'or.

If we replace dp, dq, Jr, by their values as given by formulas (7) then we obtain:

(14)

S8 = oK' — ol +99% 4 5% - 1o,
So

on=col' -E5K' + oy +rdy—-pdz,
ds,

0c =&0]' -ndl' + doz +pd7-qdx,
ds,

where we have introduced the three symbols, d%,8',8 7, which are defined by formulas
(6), to abbreviate the notation.

8. Euclidian action of deformation on a deformable line. - Consider a function W
of two infinitely close positions of the triad Mx'y'z', i.e., a function of so, of x, v, z, @,

a',-+-,y",and of their first derivatives with respect to s)p. We propose to determine what
the form of W must be in order for the integral:

.[sto,
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when taken over an arbitrary portion of the line (My), to have a null variation when one

subjects the set of all the triads of the deformable line, taken in its deformed state, to the

same arbitrary infinitesimal transformation from the group of Euclidean displacements.
By definition, this amounts to determining W in such a fashion that one has:

W=0

when, on the one hand, the origin M of the triad Mx'y'z" is subject to an infinitely small
displacement whose projections dx, dy, ¢z on the axes Ox, Oy, Oz are:

ox =(a, + 0,2 —w,y)ot,
(15) oy =(a, + wy,x —w,7)0t,
0z =(a; +w,y —w,x)ot,

where ay, a», a3, w, @, @ are six arbitrary constant and & is an infinitely small quantity
that is independent of so, and where, on the other hand, the triad Mx'y'z'is subjected to an

infinitely small rotation whose components along the axes Ox, Oy, Oz are:
@ Ot, WrOt, W3Ot

Observe that, in the present case, the variations O&, on, 68, dp, &g, o of the six
expressions & #, &, p, g, r are null, since this results from the well-known theory of
moving triads, and as we have, moreover, verified immediately by means of formulas (7)
and (8), upon replacing d'x,0'l by their present values:

©) {6'x =a(a, + 0,z - 0,Y)0 + &' (a, + 0, x — w,2)0 + " (ay + W,y — ,X)0t

o' =(aw, +d'w, + a"w,)ot,

and 6'y,0'z,0J',0K’' with their analogous present values. It results from this we have
obtained a solution to the question, upon taking an arbitrary function of sy and the six
expressions & n, &, p, g, r for W; we shall now show that we thus obtain the general
solution (23) to the problem that we have posed.

To that effect, observe that by means of well-known formulas relations (2) permit us
to express the first derivatives of the nine cosines @,a’,---,y" with respect to so by means
of the cosines of p, g, r. On the other hand, we remark that formulas (1) permit us to
conceive that one expresses the nine cosines a,a’',--+,y" by means of the & 7, &, and the
first derivatives of x, y, z with respect to so. Therefore, we may finally express the
desired function W as a function of so, and x, y, z, and their first derivatives, and
ultimately of &, #, &, p, ¢, r, which we indicate upon writing:

* We suppose, in what follows, that the deformable line is susceptible to all possible deformations, and, as
a result, that the deformed state may be taken to be absolutely arbitrary; this is what one may express upon
saying that the deformable line is free.
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dx dy dz

W=W(,,x,y,2,—
oot e s,

5.1.6.0.9.7).

Since the variations 68, on, o, dp, dq, Or are null in the present case, as we have
remarked that there is such an instant, we finally have to write the new form of W that

one obtains, by virtue of formulas (9), and for any a,, az, as, an, a», ws:

6W6x+aW§y+aW6z+ aW(de+aW(5dy+aW§dz _o.
0x ay 0z g dx o ds, gdy o ds, o dz o ds,
ds, ds, ds,

We replace dx, dy, dz by their values (9) and 6ﬂ o0— & 6ﬁby the values that one

s, ds, ds,
deduces upon differentiating; equating the coefficients of ai, az, a3, an, an, s to zero; we
obtain the following six conditions:

ow ow ow

—=0, —=0, —=0,
ox ay 0z
oW dz oW dy_O oW dx oW dz_o oW dy oW dx_o
aﬂdso aﬁdso , aﬁdso aﬂdso , aﬂdso aﬂdso ,
ds, ds, ds, ds, ds, ds,
The first three show, as we may easily foresee, that W is independent of x, y, z; the last
three express that W depends on & j—y ;—Z only by the intermediary of the quantity:
So 4y as,

2 2 2
dx dy dz
— | 4+ = +]|—],
ds, ds, ds,
and since the latter is, from formula (3), equal to g—l + 772 + él we finally see that the
desired function W has the remarkable form:

W(S(), g) 773 é.’pa Qa r)'

If we multiply W by dsy then the product Wds, that we obtain is an invariant of the
group of Euclidean displacements that is analogous to the one that, under the name of
linear element, provides the distance between two infinitely close points of the curve (M)
that is described by the point M.

Similarly, the common value of the integrals:

j Boﬁ ds,, J. Bds ,

A
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when taken between two points Ay and By of the curve (M) and the corresponding points
A and B on the curve (M), determines the length of the arc AB of that curve (M); in the
same spirit, upon associating the notion of action to the passage from that natural state
(Mp) to the deformed state (M) we add the function W to the elements of the definition of
the deformable line, and we say that the integral:

.[:O W ds,

is the action of deformation on the deformed line between two points A and B, which
correspond to the points Ay and By of (Mp). In this definition and in what follows, we
suppose that the arcs sy and s, are regarded in the sense of Ay going to By and A going to
B, or conversely, that the notations Ag, By, A, B denote the extremities of the line in the
natural state and the deformed state, corresponding to that convention.

We also say that W is the density of the action of deformation at a point of the

d
deformed line relative to the unit of length of the undeformed line; w20 will be the

ds
action density at a point relative to the unit of length of the deformed line.

9. Force and external moment. Effort and the moment of external deformation.
Effort and the moment of deformation at a point of the deformed line. - Consider an
arbitrary variation of the action of deformation between two points A and B of the line
(M), namely:

(5jB°st0 _ jB" ALY LU SO WLy Sy WL S P
" a| 9E on ac ap dq or

By virtue of formulas (7) and (8) of sec. 7, we may write this as:

@)

+ﬂ gél'—g-'éK'+@+r6'x—p§'z
on ds,

+M §6J’—n61’+&+p63)—q6'x
¢ ds,

+ﬂ ﬂ+q§K'—r§J' +ﬂ doJ +rol' - qoK'
ap \ ds, aq \ ds,

+ﬂ doK +pdl' = qol' | |ds,.
or \ ds,
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We integrate the six terms that refer explicitly to the derivatives with respect to so by
parts and obtain:

BO
o["w ds, = W e oy e W e W Wy o W s
4 & an ac op dq or

Bl d oW ow oW, d oW oW ow ).,
—j +q -r X+ +r -p Jy

allds, 08 " ac  an ds, ag  0E ' oc
d ow ow ow )., d ow ow oW ow oW ),
+ +p -q o0z + +q -r -n -< Jl
ds, d¢ an 0& ds, op or dq ¢ an
d oW W W W aWJ(SJ,

+ +r - + -
ds, 0q op par 7785 gag

d oW oW oW  _ oW aW}SK}dSO

+ + - - -
ds, or paq qap 5677 7765

Set:
F'=ﬂ,G'—ﬂ,H =ﬂ,]’_ﬂ,J’_ﬂ,K =ﬂ,
& an ¢ op aq or
, d oW ow oW
X, = q -
ds, o0& s on
v - d oW aW ow
*ds, dn "oE T d¢c
, d oW ow ow
ZO = +p —-q ’
ds, 0¢ on &
, d oW ow oW ow ow
L, = +q -r +7 -G ,
ds, dp or aq il on
,d oW oW ow ow ow
MO = +r -D +g _5 5
ds, or op or 0& il
, d oW ow ow ow ow
N, = +tp—-q—+&—-n——,
ds, dq dq ap an &
We have:

éj:’w ds, =[F'8x+G'8y + H'8% + '8l + J'8]' + K'0K ']

_ j:O(X(')(S'x + Y8y + Z00% + Lol + MLOT' + N\OK )ds, .
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Upon first considering the integral that figures in the expression of J j:OW ds, ,we call

the segments that issue from M whose projections on the axes
Mx',My',M7' are X,Y,,Z; and L,,M,,N, the external force and external moment at the

point M relative to the unit of length of the undeformed line, respectively. Upon
regarding the completely integrated part of & j:OW ds,,we call the segments that issue

from B whose projections on the axes Mx',My',Mz' have the values —F, 1;0 ,—Gl;O ,—H 1'30 and
—Il;o ,—J;O ,—Kl;o that the expressions —-F',—G',-H'and -I',-J',-K'take at the point By
the external effort and external moment of deformation at the point B, respectively. We
call the analogous segments that are formed from the values -F f;o ,—G;O —H ;O and
—I;O ,—J;O ,—K;O that the expressions —-F',—G',-H and -I',-J',—K' take at the point A
the external effort and external moment of deformation at the point A, respectively.

The points A and B are not presented in the same fashion here, which conforms to the
convention that distinguishes them and the convention that was made regarding the sense
of the arc so.

Suppose that one cuts the deformed line AB at the point M, and that one separates the
two parts AM and MB; one may regard the two segments (-F'~G',—H')and
(-I',-J',-K") that are determined by the point M as the effort and the external moment
of deformation of the part AM at the point M, and the two segments (F',G',H")and
(I',J',K") as the effort and the external moment of the part MB at the point M. It
amounts to the same thing if, instead of considering AM and MB one imagines two
portions of the deformable line that belong to AM and MB, respectively, and have an
extremity at M. By reason of these remarks, we say that -F',-G',-H' and -1',-J',-K'
are the components of the effort and the moment of deformation exerted on AM and on
any portion of AM ending at M at the point M along the axes Mx',My',Mz',and that
F'.G',H'and I',J',K' are the components of the effort and moment of deformation
exerted on MB and any portion of MB ending at M at the point M along the axes
Mx',My' ,Mz'.

We observe that if one replaces the triad Mx'y'z' by a triad that is invariably related

then one is led to conclusions that are identical to the ones that we have previously
indicated (24).

10. Relations between the elements defined in the preceding section; diverse
transformations of these relations. - The different elements that were introduced in the
preceding section are coupled by the following relations, which result immediately from
comparing the formulas that serve to define them:

** Note sur la dynamique du point et du corps invariable, Tome I, pages 260 and 269.
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di+qH'—rG'—X('J=O, d—l+qK'—rJ'+77H'—gG'—L('J=0,
S, ds,
(11) d£+rF'—pH'—YO'=O, di+rl'—pK'+gHF'§H'—M(;=0,
ds, ds,
H/ ] ! ! dK/ ! ! ! ! !
d—+pG -qF'-7Z,=0, —+pJ'=ql'+§G'-nF'-N,=0.
ds, ds,

One may propose to transform the relations that we proceed to write, independently of
the values of the quantities that figure in them that are calculated by means of W.
Indeed, these relations apply between the segments that are attached to the point M, and
which we have given names to. Instead of defining these segments by their projections
on Mx',My',Mz', we can just as well define them by their projections on other axes.
These latter projections will be coupled by relations that are transforms of the preceding
ones.

The transformed relations are obtained immediately if one remarks that the primitive
formulas have a simple and immediate interpretation by the addition of axes that are
parallel translated from the point O to the moving axes.

1. First consider fixed axes Ox, Oy, Oz. Denote the projections of the force and
external moment at an arbitrary point of the deformed line onto these axes by Xy, Yo, Zo
and Lo, My, No, and the projections of the effort and the moment of deformation on the
same axes by F, G, H and I, J, K, so the projections of the above on the Mx',My' ,Mz'

axes willbe F',G',H' and I',J',K'. Evidently, the transforms of the preceding relations

are:
dF

—-X, =0,

ds, 0

dl +de _Gdz 1L, =0,
ds, ds, ds,
Gy

ds,

@,
ds,

0K G s
ds, ds, ds,

We may regard the force X,,Y,,Z;and the momentL,,M ,N,, or, if one prefers, the

force Xo, Yo, Zo and the moment Lo, My, Ny as distributed in a continuous manner along
the line; this force and moment will be referred to the unit of length of the undeformed
line. In order to have the force and moment referred to the unit of length of the deformed
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! ! ! ! ! ! d
line, it suffices to multiply X .Y,.Z,,L,,M,,N,,or Xo, Yo, Zy, Lo, Mo, No by %,Where
s

ds is the linear element of the deformed line that corresponds to the linear element dsy of
the undeformed line. We introduce the projections of the force and external moment on
the fixed axes Ox, Oy, Oz, namely, X, Y, Z, L, M, N, which are referred to the unit of
length of the deformed line; we obtain the relations:

L D
ds ds ds ds

(12) d—G—Y=0, d—J+F@—H§_M=o,
ds ds ds ds
d—H—Z=0, d—K+Gﬁ—Fﬂ—N=O,
ds ds ds ds

which are identical with those considered by several authors, and, in particular, by LORD
KELVIN and TAIT (*°). However, the latter are obtained upon applying what one calls,
in classical mechanics, the principle of solidification, and upon starting with the notions
of forces and couples, a priori, which are thus expressed as a function of the
deformations, a posteriori, by virtue of the hypotheses. Under these hypotheses, we have
imagined only infinitely small deformations up till now, whereas now we presently place
ourselves in the most general case.

2. One may give a new form to the equations relative to the fixed axes Ox, Oy, Oz.
We may express the nine cosines a,a’,a”,...,y" by means of three auxiliary variables; let
y exXp vy oy y

A1, A2, A3 be these three auxiliary variables. Set:

D ydf ==Y pdy =w(d, +w,ydA, +widl,,
Dlady ==Y yda = xdA +x,d2, + xydAs,
Y Bda=-) adf =o/dA +0,dA, +0yd A, .

The functions @, x,,0; of A1, A2, A3 so defined satisfy the relations:

aw—; aw—l/ + /O_/ /O_/ _O

on, ox, CITHOT

X' ayl

X Kol -0 =0, (i,j=1,2.3)
oA, 04,

GTo SR Yo i

—L 4wy -w' y =0,

J
and one has:

* LORD KELVIN AND TAIT. - Natural Philosophy, Part. 11, sec. 614.
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A
p=w1’d/11 +w£i?2+w;d R

So So So

,dA da,

q=x——"+X a2, + X5
ldso zdso Bdso’

r=0, +0, 4 d/, .
0 So ds,

+0,

When we denote the projections on the fixed Ox, Oy, Oz axes of the segment whose
projections on the Mx',My',Mz' axes are @, x!,0, by @;, x:, G we have:

ada"+ Bdp" +ydy" =—(a'da'+ p'dp'+y'dy") =) wdA,
a'da+ B'dp +y'dy =—(ada" + pdB" + ydy") = indﬂi ,
ada’+/)’d/))/+}/d},/ =—(a'da+/)"d/5+}/'d}/) =ZO’idﬂi,

by virtue of which (26), the new functions @;, i, G of 41, A, 43 satisfy the relations:

awj _%:X,o',—x.o'.
ar oA, T T
axj ax,;
———I=O'.ID'.—O'-W» i,.=1?2’3’
kg oA, T T o :
00, 9do.
j—i=wi)(j_wjx‘
FYRFYY

We again make the remark, which will be of use later on, that if one denotes the
variations of A;, A, A3 that correspond to the variations dct,dct’,-+-,0y" of a,c',---,y" by

OA1, 04z, 045 then one will have:

o' =w 0\ +w,0A, +w;0A,,
A" = 310 + 2,00, + ;04
OK' =0,0A, +0,0A, + 0,04,
ol =adl' + o] +yoK' =w L, + y,M, + o,N,,

%% These formulas may serve to define the functions @;, ¥, o; directly, and may be substituted for:

! ! !
@, = awi + ﬂ;(i + yai,

x. =aw + By +yo’, (i=1,2,3).
i i i i

o . =daw +p"Y +y'ol.
l l l l
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o] =a'dl'+ B8]+ y oK' =w,L, + y,M, + O,N,,
0K =a"0l'+ B'0J'+y'0K' =w,L, + y;M, +O0,N,,

where I, &/, 5K are the projections onto the fixed axes of the segment whose projections
onto Mx',My',Mz are dI',0J',0K’.
Now set:
IT=wl'+xJ +0K =wl+yxJ+0K
J=w,I'+ )] +0,K' =w,l + x,J +0,K
K=wl'+xJ +0K =w,]+x,J +0,K
[0 = wl’L(; +)(1’M(; + O';N(; =w,L,+ M, +0,N,
/\/{0 =ZD’£L(; +X£M(; +O'£N(; =w,L, + },M, +0,N,
Ny =@, Ly + ;Mo + 0Ny =@, L, + )M, + O, N,

0°
and we will have the equation:

I ' ! ! ' ! !
d__ll ﬂ"‘qal,_r)ﬁ’ -J' d)(l+rwl po, |-K ﬂ"‘p)(l_qwl
ds, ds, ds,

0

+F'(xic-om)+G (0§ -ws)+H' (wn- & - L, =0,

with two analogous equations. If one remarks that the functions & 7, &, p, ¢q, r of

A, Az, A3, dj“ diz A? —=give rise to the formulas:

“ds, ds,

& op w, ' )

—+ on=0, ——=——"4qO0, - 1X,;,

oA Xi§—om= ok ds, qo0; —1X;
d

an+0§ wic =0, 99 _ X’+rw - po;,

A, oA, ds,

s or do] ,

— + @, 0, —=—L 4 py -

o M- x& = 07 ds, px;

which result from the defining relations for the functions@/, x;,0;,and the nine identities
that they verify, then one may give a new form to the preceding equation:

AL _ 108 9N 98 0P 510G g O

-£, =0,
ds, A oA A aA oA A

with two analogous equations.
Upon setting:

T'=w/(I'+YH -G+ x/(J +F -XH) + 0/(K' + X'G' - y'F"),
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L =@ (L +YZ, - 2Y)+ ) (M) + X} - XZ) + 0 (N, + XY~ yX1),
with analogous formulas for 7',K', M;, N one similarly finds the form of the equation:

g_(1/+ y/H/_Z/GI)a_p_(J/+Z/F/_lel)ﬂ —(K’+x’G’—y’F’)i—4; =O ,
ds, A, 4, A,

with two analogous expressions.
We will soon apply the transformations that we just indicated; for the moment, we
limit ourselves to making the remark that the expressions 8l',0]",0K',and dl, dJ, 6K are

not exact differentials.

3. Instead of referring the elements that relate to the point M to the fixed axes Oxyz,
imagine that in order to define these elements, a trirectangular triad Mx'y'z" moving with
M, whose axis Mx| is subject to being directed along the tangent to the curve (M) given
the sense of the increasing arc length. To define this triad Mx]y/z, refer it to the

triad Mx'y'z',and let 1,I',1" be the direction cosines of Mx, with respect to the latter triad,

m,m’,m" ,those of My,, and n,n’,n" ,those of Mz,. The cosines [,I',l"will be defined
by the formulas:

1—g% Y o B
ds ds ds
1.e., by the following:
1=, =1, =L
£ £ £

upon setting:
e=E+n*+c.

We assume that the triad Mx;y,z, has the same disposition as the others. We make no

other particular hypotheses on the other cosines; from their definition, they will be simply
subject to verifying the relations:
mE+m'n+m'sc =0,
nE+n'n+n"c=0.

Suppose that so varies and that, for an instant, one makes it play the role of time.
Moreover, refer the triad Mx]y/z, to the fixed triad Oxyz and denote the respective

projections of the instantaneous rotation of the triad Mx,y,z, onto the axes Mx;, My, ,Mz,
by p1, g1, r1 in such a way that one will have three formulas such as the following:
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p, = lp+l'q+l”r+2n;i—m,
s

0

upon admitting the same disposition for the triads.
Finally, denote the projections of the force and external moment at an arbitrary point M of
the deformed line Mx/,My ,Mz, onto (?) by (?) and referred to the unit of length of the

undeformed line, and the projections of the effort and the moment of deformation by F,G,,H,

and I/,J/,K|. The transforms of the equations of the preceding section are obviously:

dF/ ! ! ! dl/ ! ! !
—L+qH -G -X/=0 —+q, K, -rJ] -L =0
ds, ds,
dG/ ' 12 12 dJ/ ! ! !

(13) —Y+nF -pH -Y'=0 —+nrl-pK -eH -M, =0
ds, ds,
dH/ ! ! ! dK/ ! ! ! !

1+plGl_qu1_Zl=O 1+p1J1_qlll_gGl_N1=O

ds, ds,

In the strength of materials, one calls F,' the effort of tension; the components G/, H| are the
shear efforts in the plane normal to the deformed line. Similarly, the component ] of the
moment of deformation is a moment of torsion; the components J,,K| are called the moments of

flexion.
If, in the fourth equation (13), one has Ll' =0 and ¢g; =0, then it follows that:

ﬂ—r]]{ =0,
ds,

from which results the proposition, which was established by POISSON (*’) for the case where
L/'=0,M /=0, N/=0,q =0,that if J,=0 then one hasI, = const.

11. External virtual work. Varignon’s theorem. Remarks on the auxiliary variables
introduced in the preceding section. - For the deformed line AB, given an arbitrary virtual
deformation, we give the name of external work to the expression:

0T, =-[F'6'x+G'6'y+H'6'z+1'61'+ J'6J + K'6K'1}}

7 POISSON. - Sur les lignes élastiques a double courbure, Correspondance sur 1’Ecole Polytechnique, T. III, no.
3, pp. 355-360, January 1816. POISSON’S proposition is independent of the formulas that define the effort and the
moment of deformation by means of W; POISSON established them by writing the equations of equilibrium of a
portion of the line by the principle of solidification; BERTRAND gave them a proof in a note in the Mécanique
analytique of LAGRANGE, which we will review.
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4 ji%xgak LYY+ ZL8%+ Lo + M. &J' + N.6K")ds, .

From the preceding section, upon setting£=[0%, L L = '%, ..., one may give the
s s

following forms to that expression:

0T, =-[Féx+GOy+Hdz+ 1581 +J8J + KOK],

+ jf(x(sx + Yy + Z&% + LOl + MSJ + NOK )ds,
0T, =-[Fox+GSy+HOSz+ I + JoA + KA,
+[(XOx+YOy+Z82+ LA + MO, + NoAds ,
0T, =—[F'6'x+G'8'y+ H'6'z+ ISA + JoA + KA,
[ Xy X+ X[y + Z)0 2+ L + MO, + NoA)ds

We will apply the last two later on. As for the first two, we shall deduce a fundamental
proposition of statics here, where the idea, though not its present form, is due to VARIGNON,
and which we have encountered already in the interpretation given by SAINT-GUILHEM of the
relations that couple the external forces and quantities of motion in dynamics. Identifying the
effort and the moment of deformation at a point M of the line M with the resultant and the
resultant moment of a system of vectors relative to the point M; let Pv, Po be the general
resultant and the resultant moment relative to a point P of space. Similarly, identify the force
and the external moment at a point M referred to the unit of length of (M), with the resultant and
the resultant moment of a system of vectors relative to the point M; let PN and PS be the
resultant and the resultant moment relative to a point P of space; one has this proposition:

When arc length is identified with time, the velocities of the geometric points v and o are
equal and parallel to the segments PN and PS, respectively.

This proposition is obviously the translation of equations (12), which one may write:

d—F—X=O, i(I+Hy—Gz)—(L+Zy—Yz)=O,
ds ds

12" d—G—Y=O, i(J+Fz—H)c)—(M+Xz—Z)c)=O,
ds ds
d—H—Z=O, i(K+G)c—Fy)—(N+Yx—Xy)=O.
ds ds

We may also arrive at this result in the following manner. Start with:

[“ow ds, =0T,

e
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where 7. is taken between A and B. Since 6W may be identically null, by virtue of the
invariance of W under the group of Euclidean displacements, when the expressions d'x, ...,01",
... are given by the formulas (9") or, what amounts to the same thing, when dx, dy, & are given
by formulas (9), and 61= w o, 6T = andt, 6 K= wsdt, and this is true for any value of the
constants ay, a», as, @, a», ws , from which we conclude that one has:

[F]i—jfxds=0, [G]ﬁ—ijds=o, [H]ﬁ-jfzczs=o,

[ + yH - zG]" —j:d(m VZ - 2Y)ds =0,

and two analogous formulas; in these relations, one may regard M as variable, and they are also
equivalent to equations (12"). One will remark that these formulas are easily deduced from the
ones that one ordinarily write by means of the principle of solidification; we will return to this
point later on in the context of the reasoning made by POISSON and reprised by BERTRAND in
regard to the deformable line considered by BINET.

Along with the expressions F',G',H',I',J',K’ that were first introduced, we have imagined
other expressions that one may propose to calculate. On the other hand, in these calculations,
one may make functions appear explicitly that one introduces according to the nature of the
problem, which will be, for example, x, y, z or x',y',z’,and three parameters A;, A, A3, by means
of which, one expresses a,a’,---,7" (**).

If one introduces x, y, z and A, A, A3 then one will have:

9 P8 9=
ds, ds, ds,
ow ow ow
I = s \7 = s IC = .
2% Sk S %
ds, ds, ds,

If one introduces x',y’,z" and three parameters A, A, A3 then one will have:

P2 G="1, H=""
Pl PR Pl
ds, ds, ds,
ow ow ow
7=, J = K=
Jd% Sd% N7
ds, ds, ds,

2 For the auxiliary variables 4;, 4, A3 one may take, for example, the components of rotation that make the fixed
axes Ox, Oy, Oz parallel to Mx',My',Mz'.



THE DEFORMABLE LINE 23

12. Notion of the energy of deformation. - Imagine the two states (M) or ApBy and (M) or
AB of a deformable line, and consider an arbitrary sequence of states that start from (M,) and end
at (M). To that effect, it suffices to consider functions x, y, z; a,a’,---,y" of sy and one variable

h, which reduce to xo, Yo, 20; @, ">V, respectively, for the value zero of i, and to the
values x, y, z; a,a’,---,y", respectively, for the value & of h relative to (M).

Upon making the parameter & vary from 4 to O in a continuous fashion, we obtain a
continuous deformation that permits us to pass from the state AoBy to the state AB. For this
continuous deformation, imagine the total work performed by the forces and external moments
of deformation that are applied to the extremities of the line. To obtain the total work, it suffices
to integrate the differential so obtained from O to 4, upon starting with one of the expressions for

J7. that were defined in the preceding section, and substituting the partial differentials that
correspond to increasing i by oh for the variations of x, y, z; a,a’,--+,7" . The formula:

5,
6T =- Lo SW ds,

gives the expression — .[ :O %dh ds, for the present value of 7., and we obtain:

_ Ioh[

By
_'[Ao [W(S(] ,‘3&,77,5', p,q,”) _W(s(] 750 ,770 7§0 apo ’qO a’/b)]dso

%Edso =

for the total work.

The work considered is independent of the intermediary states and depends only on the
extreme states (My) and (M).

This leads us to introduce the notion of the energy of deformation, which must be
distinguished from the preceding action we described; we say that —W is the deformation energy
density, referred to the unit of length of the deformed line.

13. Natural state of the deformable line. General indications of the problems that the
consideration of that line leads to. In the foregoing, we started with a state of the deformable
line that we called natural, and we were given a state that we called deformed; we have indicated
the formulas that permit us to calculate the external force and the elements that are analogous to
the ones that are adjoined to the function, W, that represents the action of deformation at a point
for the deformable line.

Let us pause for a moment on the notion of natural state. The latter is, in the preceding, a
state that has not been subjected to any deformation. Regard the functions x, y, z, ... as
determining the deformed state, which depends upon one parameter such that one recovers the
natural state for a particular value of this parameter; the latter will thus appear as a particular
case of the deformed state, and we are led to attempt to apply the notions relating to the latter.

One may, without changing the values of the elements defined by formulas (10), replace the
function W by that function augmented by an arbitrary definite function of sy, and if one was left
inspired by the idea of action that we associated to the passage from the natural state (My) to the
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deformed state (M) one may, if one prefers, suppose that the function of sy that is defined by the
expression:

W(so, 50, o, é'o,po, qo, o)

is identically null; however, the values obtained for the external force and the analogous
elements in regard to the natural state will not be necessarily null; we say that they define the
external force and the analogous elements relative to the natural state (29).

In what we just discussed, the natural state presented itself as the initial state of a sequence of
deformed states, as a state with which to begin our study of the deformation. As a result, one is
led to demand that it is not possible for it to play the role of one of the deformed states, since the
role that we have made the natural state play, and likewise the elements that were defined in
section 9, (external force, external effort, ...), that were calculated for the other deformed states,
have the same value if one refers the first of these elements to the unit of length of the deformed
line. This question receives a response only if one introduces and clarifies the notion of action
corresponding to the passage from a deformed state to another deformed state.

The simplest hypothesis consists of assuming that this latter action is obtained by subtracting
the action that corresponds to the passage from the natural state (M) to the first deformed state
(M(0y) from the action that corresponds to the passage from the natural state (My) to the second
deformed state (M). If we denote the arc length of (M) by s«), and the quantities that are
analogous to & 7, & p, q,r by &o), 10), &), P©)» 40), T0) then one is led to adopt the expression:

5B,
(14) LO (W(s,,&.m.5,p,q.7)=W(s, ’5(0) M0y >S0)> Peoy 40y »Ti0)) 145, -

Introduce s() for the independent variable instead of so, and denote the variables that become
& n, & p, q, r, when one makes s play the role that was played by sy by 20, 77(0), &0, 2, 4,
r9; one will have relations such as the following:

ds o,
b
ds,

§=§0

and, upon denoting the points of (M) that correspond to the points Ao, By of (Mo) by A, B
expression (14) becomes:

By
(15) L( WO(O) (5(0) ,5(0) ?7(0) ,g(O) ,p(o) aq(O) ar(O) )dS(O) >
0)

upon denoting the expression:

¥ We may then speak of the external force and moment, the effort and moment of deformation, because we regard
the natural state as the limit of a sequence of states for which we know the external force and moments, the effort
and the moment of deformation; this is because the external force and moment, the effort and moment of
deformation, are defined, up till now, only when there is a deformation that makes it possible to manifest and
measure them.
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ds ds ds ds
W A (O) © s © © ,”',r(O) © _W Sy ) 9" T ] 0 )
[W( 0 5 dSO n dSO dSO ) ( 0 5(0) ) ) dS(O)

by WO(O) (50), 50), 77(0), 50), p(0>, q(o), r(o)), in which sy is replaced as a function of 5.

Furthermore, from the remark made at the beginning of this section, one may, if one
prefers, substitute the following expression:

Bygy

(15" W (50, EO O O 5O O L0 )ds g,

0)

for (15), where the function W(O)(s(o), 50), 77(0), 50), p(o), q(o), r(o)), is the expression:

ds ds
(O] (0) 7°(0)
W(sy.& T ;
ds, ds,
. . dso dS(O) .
in which sy, ,—— are expressed as functions of s).
ds, ds,

One immediately confirms that the application of the formulas of section 9 to
expression (15) or expression (15") gives, upon starting with (M) as the natural state,
the same values for the external force and moment relative to the state (M), referred to the
unit of length of (M), as well as the same values for the effort and the moment of
deformation.

Therefore we may consider (M) as a deformed state when (M g)) is the natural state,
provided that the function W that is associated to the state (M) is presently W, and
WO ).

We now give several general indications about the problems that may lead to the
consideration of the deformable line.

In the preceding, as well as in what we already did, we gave formulas that determined
the external force and the analogous elements when one supposed that the functions x, y,
Z, ... of 5o that define the deformed state were known.

We immediately remark that if one starts with the givens of x, y, z, ..., and if one
calculates X, ,Y,,Z, - to fix ideas — then, after doing all the calculations, one obtains
definite functions of so . However, by virtue of the formulas that define x, y, z, ... as
functions of sy, one may obviously express X ,Y,,Z, by means of sy, x, y, Z, ..., and their
derivatives up to whatever order one desires. Upon imagining a problem in
which X .Y, ,Z,, for example, figure among the givens, we may imagine that these
expressions are given as functions of so, but we may just as well suppose that they refer x,
v, Z, ..., and the derivatives of the latter with respect to so.

% As we said at the beginning of this section, this permits us to generalize the notion of natural state that
we first introduced. Instead of simply making the idea of a particular state correspond to that word, we
may, in a more general fashion, make it correspond to the idea of an arbitrary state that we start with to
study the deformation.
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Consider a problem in which the projections of the external force and moment, either
on the fixed axes Ox, Oy, Oz or on the axes Mx',My',Mz', figure among the givens, and

suppose, to fix ideas, that these projections are given functions of so, x, y, z,
a,a',-+,y",and their first and second order derivatives. In addition, suppose that the

external force and moment are referred to the unit of length of (My) and that xo, yo, zo, are
given functions of sp. It is clear that under these conditions the formulas of section 9 that

serve to defineX,.Y,,Z,,L,,M,,N, become six differential equations between the

unknowns x, y, z, A1, A2, A3 the last three being three auxiliary functions, by means of
which one may express the nine cosines a,a’,---,y" . These differential equations, with
the hypothesis that one proceeds to make on the external force and moment, do not
involve derivatives of order higher than two.

To complete the search for the unknowns, if the problem we posed is well-defined, or
at least if it does not involve an indeterminacy as great as the one that results in only the
differential equations that we will eventually discuss, then one will have to take the
complementary givens into account. The latter may be limit conditions, i.e., conditions
that are satisfied by the unknowns at the extremities Ap and By; for example, one may
give the values at Ap and By of a certain number of expressions x, y, z, 41, A2, A3, and
expressions such as F;,G,,H,,l;,J,,K,that relate to the effort and the moment of

deformation, or similarly to functions — more often than not, linear — of x, y, z, A1, A2, 43
and F,,G,,H,,I,,J,,K,.

We shall show, by particular examples, with particular hypotheses, how differential
equations and complementary conditions may correspond to various problems; however,
one may vary the questions.

If the arc length s figures explicitly in the givens then one will consider s as a
supplementary variable, and one may adjoin the relation:

2 2 2
(i) (&) () -
ds ds ds
It often happens that one may devote most of one’s attention to the deformed line (M)
with the line (Mj) remaining in the background, so to speak. If we suppose that the
expression of W as a function of so, x, &, z, p, g, r is given and does not necessitate being
given (M) for its determination then the function W will finally be a function of so, the
first derivatives of x, y, z, of A1, A, A3, and the first derivatives of Ay, A, A3 . If the
external force and moment are also given explicitly by means of so, x, y, z, 41, A2, A3 and
their derivatives then it is clear that the problem may be considered as comprising, on the
one hand, the determination of the state (M) by means of a variable relating to that state —
s, for example - or one of the letters x, y, z, and, on the other hand, the determination of

the relation that couples so and s. With the hypotheses that we just made, so may figure
explicitly, and, in addition(31), its differential dsy may figure, or, if one prefers, the

! If one gives the external force and moment referred to the unit of length of (M), and, more generally, if
one gives these elements as functions of sy, s, X, ..., and the first derivatives with respect to one of these
letters.
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Loodsy .. ds . . S
expression d—" or its 1nversed—. We remark that the notion of the quotient, which gives
s o

the derivative of s with respect to sy, corresponds to the linear dilatation felt by the line
element ds, that issues from the point M, of (My), and which becomes the element ds that
issues from the point M of (M) that corresponds to the point M,. We return to the
dilatation that LAME specifically imagined for the particular deformable line that he
studied ().

Another type of problem will be developed later on when we seek to attach some very
special lines that were considered by geometers who used to be occupied with the present
subject, to the deformable line that was defined up till now, i.e., the free line (33), which is
susceptible to all possible deformations, upon imagining the study of the former as the
study of particular deformations of the free line.

14. Normal form for the equations of the deformable line when the external
force and moment are given as simple functions of sp and elements that fix the
position of the triad Mx'y'z’. Castigliano’s minimum work principle. — Conforming
to the indications of the preceding section, suppose that the external force and moment
are given by means of simple functions of so and elements that fix the position of the
triad Mx'y'z’. Suppose, moreover, that the natural state is given. We may consider the
equations of sec. 9 as differential equations in the unknowns x, y, z and the three

parameters Ay, Ay, A3 by means of which one expresses «,a’,---,y", or again, in the
unknowns x',y’,z and the three parameters A;, A, A3, which corresponds to a change of

variables. These two viewpoints are the ones that most naturally present themselves. In

. ) ) dx dy d
the first case, the expressions&, #, &, p, ¢, r are functions of = —y,—Z,Al, A, A,

ds, ds, ds,
%,%,%that one may calculate by means of formulas (1) and (2). In the second
ds, ds, ds,
. . 12 12 12 dx, dﬂrl
case, these will be functions of x',y',z', —,..., A, ...,d—, ... that one may calculate
So So
by means of formulas (2) and (4).
The first case is the most interesting, by reason of the analogy that exists between the
present question and dynamics of points, and between triads and rigid bodies. We
examine it first.

1. Assume that X,,Y,,Z;,L,,M,,N,,or, what amounts to the same thing, Xo, Yo, Zo,
Lo, My, Ny are given functions of so, x, y, z, A1, A2, A3. The expression W is, after

* LAME. - Lecons sur la théorie mathématique de ’élasticité des corps solides, 2" ed., pp. 98-99 (8"
lesson, sec. 41, entitled Dilatation du fil).

3 Here, the expression “free” signifies that the theory starts with the function W that depends on elements
that result from considering only that line, and which are susceptible to all possible variations.
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substituting values for & #, &, p, g, r that are related by formulas (1) and (2) to definite

functions of sp, — dxr dy dz A Jo, A, 4 dA, dA, dﬂ
ds, dso "ds So ds, dso " ds 5,
W, and the equations of the problem may be wrltten.
d W _y o LW W . g
dsoadx dsoa% Y
dSO dSO
AW W
dsoady dsoa% o2,
dSO dSO
iﬂ_z():O, i ow _ﬂ_/\&:o,
ds, 4 dz ds, , dA, A,
dSO dSO

Lo, Mo, No, are functions of so, x, y, z, A1, A2, A3 that result in the functions of sec. 10.
This results immediately either from the formulas of the preceding sections or, in a
more immediate fashion, from the formulas of the definition of Xo, Yo, Zo, Lo, Mo, No, F

b

G, H, T, J, K may be summarized in the relation:

BO
S| 'Wds,+0T, =0,
Ay
i.€., in:

P j:°st0 —[FOx+GOy+HBz+ TS +Joh + KA 1%

_ j: (X, 0x+Y,8y + Z, 07 + L,0A + M,OA, + N,04,)ds, .

We may replace the preceding system by a system of first order equations upon
introducing six unknown auxiliary variables for which, instead of first order derivatives
of x, v, z, &1, A2, A3, we choose the six expressions that we just considered:

94t 94 9

ds, ds, ds,

ow ow ow
I=adj.| s j=aCM2, IC_ di;

ch0 ds, ds0
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Upon supposing that the Hessian of W with respect toﬂ dy dz dh diy d—i“is

ds, ds, ds, ds, ds, ds,
non-null (which amounts to supposing that the Hessian of the function W is non-null
when it is expressed in terms of & 7, &, p, g, r), we may derive values for the last six

dA,

derivatives ;i_x ,...,T as functions of F, G, H, Z, .7, . We substitute these values in
So So
the expression:
g=ﬂ ow +ﬂ ow +ﬁ ow +Zd/1" ow
ds, aﬂ ds, 9 dy ds, aﬁ ds, a%

ds, ds, ds, ds,

-W,

which is none other than the expression of:

ow ow oW ow oW oW
& +n +c +p +q +r -W,
& on g ap dq ar

dr dy dz ,  dh,

as a function of s,,— AN ,--- After substitution, we obtain a function of sy,

ds, ds, ds,’ ds,
M, M, A3, F, G, H, Z, J, K, which we continue to denote by the letter £&. Now, the total
differential of the latter functions is obviously:

A
ﬁd W +-'-+Ld W +~-—ﬂds0 _zﬂd}%
ds, dx ds, dA, as,, oA,
ds, ds,
or
D ap e D a6+ + P 2 gy Yo g W g zﬂdz,.,
ds, ds, ds, ds, ds, ds, as, A,

and as a result one has the following form for the system that defines x, y, z, A1, A2, 43, F, G, H,
I, JK:

dr_9E  dy _0f i _9E  dA_0E  dk_0f i _0E

ds, oF ds, oG  ds, oH ds, oI  ds, oJ ds, oK

9

O _ylo Oy o

ds, ds, ds,
£+£_£O=O’ ﬂ+£_/\/{(}=0, ﬂ+£—/\/’0=0.
ds, 04 ds, 04, ds, 04,

We have supposed that, by virtue of the formulas that define x, y, z, 41, A2, A3 as functions of
s, one can express Xo, Yo, Zo, Lo, Mo, Np as a function of sy, x, y, z, A1, A2, A3; this is possible in
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an infinitude of ways, and one may choose the new forms for Xo, Yy, Zo, Lo, Mo, Np in such a
oU oU doU U oU aU

way that the partial derivatives — ,— ,respectively, change the sign of the
ax dy 9z 6& a/1

same function of U/, which is or is not independent of so. Suppose that this is the case and let V

denote the function of x, y, z, A1, A2, 43 (and maybe sp) that is defined by the formula:

V=E+U,
the preceding system takes the form:

dr 9V dy v i @V dA Y dh oV dh

ds, oF ds, oG  ds, oH  ds, oI  ds, oJ  ds, oK

ar oy daG _ 9V dH _ 9V
ds, ax ds0 _a_y’ ds0 oz
aI__ v 4T K
ds, oA ds, o oA, ds, B oA,

Here we have equations that are presented in the form of HAMILTON’S equations from
dynamics. In particular, if we suppose that the new forms of Xo, Yo, Zo, Lo, Mo, Np are chosen,
as 1s always possible, in such a fashion that sy does not figure and that they are partial derivatives
of a function — U of x, y, z, 41, A2, 43, and if, in addition, we suppose that W(so, & 7, &, p, q, 1)
does not depend on sy (**), then we have, more particularly, a canonical system of equations.

2. Now look at the functionsx’,y’,z',and suppose furthermore that the functions
a,a - ,y"are expressed by means of three auxiliary functions A;, A, A3. Assume
that X,.Y,,Z,, L,,M,,N; are given functions of sy, x',y",z’, A, A2, A3. The expression W is,
after substituting the values for & 7, &, p, g, r that are derived from formulas (2) and (4), a well-
defined function of so, x',y',z', A1, A, A3 that we continue to denote by W, and the equations of
the problem may be written:

d oW ) d oW
——-X, =0, =0,
ds, adi ’ dso adj'l [0

ds, ds,

d oW ) d oW :
——-Y, =0, ———-M;=0,
ds, adl | ds, a% gt

ds, ds,

** To express this hypothesis one may say that in this case - and by definition - the line is homogenous.
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d oW
-7, =0, —22 - N,=0,
0 dsoadi; 0
ds,

31
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where £, M;, N are the functions of so, x',y",z’, A1, A, A3 that result from sec. 10.

We may replace the preceding system by a system of first order equations upon
introducing six auxiliary unknowns for which, instead of first order derivatives of
x',y",z', M1, A2, A3, we choose the six preceding expressions that we already envisioned:

Pl PR Pl
ds, ds, ds,
ow ow ow
y AR LU (LA LA
Ak T T Lan C Tk
ds, ds, ds,

Upon  supposing that the Hessian of W  with respect to
! ! ! A
dx ,dy , dz ,dﬁl ,diz ,d 3 is non-null, we may derive values for these latter six
ds, ds, ds, ds, ds, ds,

derivatives as functions of F', G', H', 7', J, K' from these six relations; we transport

these values into the expression:

dx' oW dy' oW dZ oW 5 4 oW

E=— -+ -+ -+ -W,
ds, adi ds, adl ds, adi ds, a%
ds, ds, ds, ds,

we obtain, after substitution, a function of so, x',y",z", A1, A2, A4, F', G, H', T, J, K' that

we continue to denote by the letter £. Now, the total differential of this latter function is

obviously:
B+ D6+ g 4 g+ e g 4 g
ds, ds, ds, ds, ds, ds,
S IW sy - W g Wy W e zﬂdii,
as, dx ady 0z A,

and, as a result, one has the following form for the system that defines x',y',z", A1, Az, As,
F.G,H,T,7,K"

A 9 dy o0&  df o9& da_9E  dh, o8& dhy  oE

ds, oF'  ds, oG ds, oH' ds, oI  ds, oJ  ds, oK'
di+a_(5’/_X(;=O’ d£+a_(5’/_y()/=0, di+a_(5’/_z(;=0,
ds, 0x ds, dy ds, 0z
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£+£_4§=0, ﬂ+£_/\/{é=0 E.FK_N(;:O.
ds, oA ds, 04, ds, 04,

By virtue of the formulas that definex’,y’,z", A1, A, A3 as functions of s, we have
supposed that one can express them as functions of sy, x',y',z", A1, A2, As. This is
possible in an infinitude of ways and one may choose the new forms for them in such a
way that they are the partial derivatives, up to sign, of the same functions ¢/, which may
or may not be independent of so. Suppose that this is true and introduce the function of

x',y',z", M, A, A3, (and maybe s¢) that is defined by the formula:
V=E£+U;

the preceding system then takes the form:

ds, oF'  ds, oG ds, oH' ~ds, oI  ds, oJ  ds, oK'

ad V' dy 3V dZ aV dh_dE dh, Y dA Y

v a6 W o
ds, T ds, Ty ds, ]
dT 47 oV %
R R

In the case where the forces and external moments are zero, the equation:
8| W ds,+3T, =0

corresponds to Castigliano’s principle of minimum work (*°), which was already
considered by VINE, COURNOT, MENABREA, and others.
Consider the equations in the normal form:

de O dF
ds, OF ds,
Upon integrating from A to By, they become:
BO ag BO
xBo_on=.[Aoa_FdS°""’ FBO—FAO=LOXOds0,...

» CASTIGLIANO. - Théorie de I’équilibre des systemes élastiques et ses applications, Turin 1879. See
also MULLER-BRESLAU, Die neueren Methoden der Festigkeitslehre, 3 ed., Leipzig, 1904.
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For example, if one supposes that Xo, Yo, Zy are null then one has F' = const.
=F, =F, = G=const.,H=const. Inthe three formulas such as:

B dE
Xp =X, ='[Ao a_FdSO ,

F, G, H are independent of sp, and one may write:

d (5
Xp — Xy =a—FL05ds0.

If Lo, Mo, Ny are null, and if £=£=£=O then one obtains analogous
A, 04, IA,

theorems that relate to A;, A, A3. One is therefore led, in a very direct and natural

manner, to what one calls the theorems of CASTIGLIANO in the strength of materials.

One therefore generally imagines the simple case of an infinitely small deformation; W is
a quadratic form, and the same things are true for £ as those we deduced for W as its
adjoint form.

15. Notions of hidden triad and hidden W. - In the study of the deformable line, it
is natural to direct one’s attention to the curve described by the line, in particular, This
amounts to starting with x, y, z and considering «,a’,---,y" as simple auxiliary variables.
This is what we may likewise express by imagining that one ignores the existence of the
triads that determine the deformable line, and that one knows only the vertices of these
triads. Upon taking this viewpoint, in order to envision the differential equations that one
is led to in this case, we may introduce the notion of hidden triad, and we are led to a
resulting classification of the diverse circumstances that may present themselves in the
elimination of a,a’',---,y".

A first question that presents itself is therefore that of the reductions that may be
produced in the elimination of the a,a',---,y" . In the corresponding particular case
where our attention is directed almost exclusively upon the curve described by the
deformed line (M) one may occasionally make an abstraction from (M), and, as a result,
from the deformation that permits us to pass from (My) to (M). It is from this latter
viewpoint that we may recover the line that is called flexible and inextensible in rational
mechanics.

The triad may be considered in another fashion. We may make several particular
hypotheses on it, and similarly on the curve (M), which amounts to envisioning particular
deformations of the free deformable line. If the relations that we impose are simple
relations between & #, &, p, ¢, r, as will be the case in the applications that we have to
study, we may account for these relations in the calculations of W and derive more
particular functions from W. The interesting question that this poses will be to simply
introduce these particular forms, and to consider the general function W that will serve as
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point of departure as hidden, in a way. We will therefore have a theory that will be
special to the particular forms suggested by the given relations between & n, &, p, q,r.

We verify that one may thus, by means of the theory of the free deformable line,
assemble the equations that are the result of special problems that one encounters in the
habitual exposition of rational mechanics and in the classical theory of elasticity under
the title of particular cases with a common origin.

In the latter theory, one often places oneself in the appropriate circumstances so as to
avoid the consideration of deformations; in reality, they need to be completed. In
practical applications this is what one may do when imagining the infinitely small
deformation.

Take the case where the force and the external moment refer only to the first
derivatives of the unknowns x, y, z and Ay, A, A3 . The second derivatives of these
unknowns will be introduced into the differential equations only by way of W. Now, the
derivatives of x, y, z figure only in & #, £and those of 4, A2, A3 present themselves only
in p, g, r. One therefore sees that if W depends only on & 7, {or only on p, g, r then
there will be a reduction in the orders of the derivatives that enter into the system of
differential equations, and, as a result, there will also be a reduction in the system that is
obtained by the elimination of p, ¢, 7. We commence to examine the first two cases.

16. Case where W depends only on sy, & 77, £ How one recovers the equations of
Lagrange’s theory of the flexible and inextensible line. - Suppose that W depends only
on sy, & 7, £ The equations of sec. 14 then reduce to the following:

AW oW
ds, aﬂ A
ds,
AW, W o,
ds, aﬂ 94,
ds,
AW W
ds, aﬁ 94,
ds,
) . dx dy dz .
in which W depends only on sy,— ,——,—, A1, &, 43. We show that if we take the
ds, ds, ds,

simple case where Xy, Yo, Zo, A1, A2, A3 are given functions (36) of so, x, y, 2,

ﬂ ﬂ ﬁ,}q, A2, A3 then the three equations on the right may be solved for

ds, ds, ds,
A1, A, A3, and one finally obtains three differential equations that involve only so, x, y, z,
and the first and second derivatives.

** In order to simplify the exposition, and to indicate more conveniently the things to which we are
alluding, we suppose that Xq, Yy, Zy, Lo, Mo, Ny do not refer to the derivatives of 4;, 4, 3.
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First, imagine the particular case where the given functions Lo, My, Ny are null; the

same will be true for the corresponding values of the functions of any of the systems:
(L',M',N"),(Lo, Mo, Ny), (L, M, N). From this, it results that the following equations:

W W, W,
oA, oA, EYR
amount to:
F _ G _ H
dx dy dz’
ds ds ds

and, upon denoting the common value of these ratios by — 7, the equations (?), in which it
is necessary to carry Ay, A2, A3, may be written:

L[T@}XO =0, L[TQJ+Y0 =0, i[T@}zo =0,
ds, \  ds ds, \  ds ds, \ ds
or, if one prefers:
i[TQJ+X =0, i[TQJ+Y=O, i[TEJ+Z=O,
ds\ ds ds\ ds ds\ ds

The effort actually reduces to an effort of tension T.
Having said this, observe that if one starts with two positions (My) and (M), which are

assumed given, and one deduces the functions Lo, Mo, Ny from them, as in sec. 9 and 10,

then in the case where the three functions are null one may arrive at the conclusion that
this result presents itself accidentally, ie., only for a certain set of particular
deformations. However, one may also arrive at the conclusion that it presents itself for
any deformed (M), since it is a consequence of the nature of (M), i.e., the form of W.
Imagine the latter case, which is particularly interesting: W is then a simple function

of 5o and §-2 + 772 + él, or, from (37), what amounts to the same thing, of so and % The
s

equationsZ—zV =0, (i= 1, 2, 3) reduce to identities (38) and if one supposes that W is

d . . .
expressed by means of so and u = % —1(where u represents the linear dilatation at the
s

point), then all that remains are the equations:

. . . . . ds, .
7 One may also say that W is a function of s, and the linear dilatation u = d—o — 1 at the point M, as was
s

considered by LAME in his Lecons sur la théorie mathématique de I'élasticité des corps solides, pp. 98,
99, in the 2" edition.

* The triad is completely hidden; we may also understand that we have a pointlike line.
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4 Tﬁ +X =0, 4 Tﬂ +Y =0, 4 Tﬂ +Z2=0,
ds\ ds ds\ ds ds\ ds

where one has:

T=-—.
ou

If we suppose that the function W is known, then that gives us X, Y, Z or Xy, Yo, Zo as
functions of s, s, X, y, z, and the fourth derivatives of the latter (39) with respect to one of
the others; the preceding equations, combined with:

2 2 2
(i) ) (5] -
ds ds ds
provide four differential equations that define four of the variables sy, s, x, ¥, z by means
of the fifth.

If s does not figure explicitly then one may eliminate ds by means of the relation that
one derives, and what remains are three differential equations that define the three
unknowns x, y, z as functions of so.

If we imagine the particular case in which W depends on only « and sy does not figure
explicitly then we find ourselves in the presence of the equations that were proposed by
LAGRANGE (40) for the study of the line that he qualified as a “flexible and, at the same
time, extensible and contractible filament.” We must remark that explanations given by
LAGRANGE, in the second of the sections that he dedicated to the question (sec. 43)
must be revised in the following fashion: if we regard W as a given function of x then the
same 1s also true for 7 (which corresponds to the assertion of LAGRANGE that expresses

. . . . . ds .
— with these notations — the fact that F is a given function of d—). We may substitute
o

the unknown 7 for the unknown u since the knowledge of one of them as a function of s
implies the same for the other, and finally one is led to the study of four functions of s:
T, x,y, z by means of the four preceding equations ( and supplementary conditions if they
are given). One observes, in addition, that if, as LAGRANGE seems to have supposed,
the given expressions of X, Y, Z do not refer to s explicitly then one is limited to the
consideration of the first three equations and the three variables x, y, z, where the
differential of s was eliminated by means of the fourth equation.

% One may suppose that derivatives of order higher than the first have been introduced.

* LAGRANGE. — Mécanique analytique, 1* part, Section V, par. 11, nos. 42-43, 4™ edition, pp. 156-158.
The same question has been raised by LAME, in his Lecons sur la théorie mathématique de I’élasticité des
corps solides, 2" edition, 8" lesson, and then by DUHEM, in Tome II of his work, Hydrodynamique,
Elasticité, Acoustique, pp. 1 and following. The exposition of LAME, as well as the remarks of
TODHUNTER and PEARSON on page 235 of Tome I of their History, etc., is the reproduction of the one
that was given by POISSON, on pages 422 and following, of his Mémoire sur le mouvement des corps
élastiques, printed in 1829 in Tome VIII of the Mémoires de | ‘Institut de France.
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In the first of the sections that we cited (no. 43), LAGRANGE remarked that he was
led to the same equations for the filament that he had already considered in his exposition
under the name of flexible and inextensible filament, and in no. 44 he returned to tension.
It seems to us that there is some confusion in the exposition of LAGRANGE on the
subject of the notion of force (a confusion that was already pointed out by J.
BERTRAND from the viewpoint of dynamics alone in the note he appended to no. 44).
Indeed, it is clear that the viewpoint of LAGRANGE is that of dynamics, and that the
word equilibrium is equivalent to the word rest in his exposition. Upon introducing, at
the beginning of no. 44, “the force F' by which every element ds of the filament curve
tends to be contracted,” LAGRANGE introduced a notion of force that no longer
conforms to the definition posed at the beginning of his work (page 1), which is not a
kinetic force, but a force that we may qualify as a static force, which is measured by
means of the deformations.

17. The flexible and inextensible filament. — How, while remaining in the domain
of the section on statics, where one measures forces by means of deformation, may one
conceive and introduce the notion of flexible and inextensible filament? To give a
definition of flexible and inextensible filament, it will suffice for us to follow — but in the
opposite sense — the path that is habitually adopted, i.e., what one is often inspired to call
the solidification principle (*").

In a general manner, imagine the deformable line of sec. 5, with its natural state (M)
and its deformed state (M). Suppose that for the deformations of the line, which are
defined as in sec. 5, i.e., by a correspondence between the points of (Mj) and those of the
deformation (M), we impose the condition (42) that an arbitrary portion of (M) has the
same length as the corresponding portion, which amounts to saying that one subjects x, y,
z to the condition,

ds =dso ,

upon supposing, as we did before, that ds and dsy have the same sign. One must assume
that for such a line one would like to define the elements: exterior force, ... We imagine
a deformable line of the type considered up till now, and, instead of considering an
arbitrary deformation (M) of the natural state (M), we direct our attention towards the
deformations (M) for which one has ds = dso . As far as the position of the points and the
associated triads are concerned, these deformations coincide with the deformations of the
given inextensible line. For the definition of external force, ..., acting on the latter, we
assume the preceding formulas that we adopted with regard to any deformable line,
which one applies to the positions of that line that coincide with those of the given
inextensible line.

4 APPELL. — 1* edition, T. I, no. 132, pp- 165; in the 2" edition, T. 1, no. 120, pp- 161, the expression
solidification principle is omitted; the same is true for THOMSON and TAIT, Treatise on Natural
Philosophy, vol. 1, Part II, sec. 564, pp. 110.

*2 We shall repeat this assumption in different analogous circumstances where one is led to adjoin what we
shall later call later the internal constraints of the system that we previously studied.
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In particular, if we imagine a flexible and inextensible line then we deduce the
definition of external forces, relative to that line, that act on the line considered before,
and for which W is a simple function of s and u, by considering the deformations of the
latter for which the function u reduces to zero. Retaining only the letters s, X, Y, Z (since
s =350, X =Xo, Y="Yo,Z=12p),0ne is led to the system:

4 Tﬁ +X =0, 4 Tﬂ +Y =0, 4 T@ +Z2=0,
ds\ ds ds\ ds ds\ ds

2 2 2
in which [@j + [QJ + [%j =1, and where T represents the function of s that is
ds ds ds

defined by the formula: 7" = —(ﬂj .
u=0

ou
It will not be necessary for us to suppose that the function 7" is known in order to
obtain a well-defined problem; it will suffice to adjoin suitable limits to the conditions.

18. Case where W depends only on so, & 7, £, and where L,, My, Ny are non-

null. — Now imagine the general case, where Lo, My, N are not all three of them null.
Upon introducing the auxiliary functions F, G, H the equations:

Woroo Moo, Mon o
A, A, oA,
amount to the relations:
n ok
ds ds
Fg—Hﬂ—M =0,
ds ds
GO gy g
ds ds

in such a way that in the present case the component of the effort that is tangent to the
line, which one may call the effort of tension, the component of the effort that is normal
to the line, which one may call the transverse effort, as is it is called in the strength of
materials, and finally, the vector (L, M, N) determine a tri-rectangular triad.

Again introduce the effort of tension:

T = —(F@+GQ+H£J,
ds ds ds

as an auxiliary, and we obtain:

—F=T§+Nﬂ— @,
ds ds ds
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byl
ds ds ds

H=TE mE_ D
ds ds ds

+Mﬂ+Nﬂ=0.
ds ds ds

L

Asaresult,if X, Y, Z, L, M, N are given as functions of s, x, y, z and their first derivatives
then one comes upon three equations such as the following:

4 Tﬁ +X+i Q—Mﬁ =0,
ds\ ds ds ds ds

to which we may adjoin:

dx\ (ay\ (dzY
[—j +[—yj +[—Zj =1, LQ+MQ+N£=O,
ds ds ds ds ds ds

in such a way that for the last problem we posed we have five differential equations that
refer to four unknowns, namely, x, y, z, and the auxiliary unknown 7.

19. Case where W depends only on s, p, g, r. — Suppose that W depends only on s,
P, q,r. The equations of sec. 14, which reduce to the following:

Y. -0, AW W
ds, a% a4
ds,
d oW oW
Y, =0, —_— =0
’ ds, a% a4, gt
ds,
7 0. AW oW o
ds, a% a4
ds,
dA, dA, dA,

in which W depends only on s, A1, 42, 43, , = then show us that if we take
s, ds, ds,

the simple case where Xy, Yo, Zyo do not refer to the derivatives of x, y, z then one may
obtain x, y, z from the equations on the left and substitute their values into the equations
on the right, i.e., into Ly, Mo, Np. If these latter three do not refer to the derivatives of

order higher than the first of x, y, z then, when Xy, Yo, Zy refer only to s, x, y, z, A, and
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A 25
dx , y , % A, A, , d —,one then comes down
ds, ds, ds, ds, ds,

to three second order equations that determine 4, A, 4.
The particular case in which the given functions Xo, Yo, Zo are identically null is

particularly interesting. One has simply the three equations on the right which, if Lo,

Lo, Mo, Ny refer only to so, x, y, 2,

Mo, No depend only on A, A, A3, and their derivatives, constitute three differentials

equations that determine A, 4,, As.

20. Case where W is a function of s, & 7, &, p, ¢, r that depends on & 7, £ only
by the intermediary of £ + 1" + &, or, what amounts to the same thing, by the

. . ds . . )

intermediary of « =—-1. - Consider the effort at a point of the deformed line and
So

suppose that for any deformation it reduces to a tension effort. This amounts to saying

that the function W of s, & n, &, p, g, r verifies the identities:

ow oW W
0§ dn  dg

- ’

5 n S

i.e., they depend on & 7, only by the intermediary of the quantity & + 7* + &, or, what

. . d
amounts to the same thing, the quantity u = SCR

So
Once again, we presently have:
F G H
dx dy  dz’
ds ds ds

and, upon introducing the common value -7 of these ratios, which is defined by the

formula:

7-_W

ou ’
we may give the system the following form:

d (., dx d oW oW
ZIr=lix =o, l+w—22 "2 _r -0,
ds[ dsj ( ﬂ)dsaM A, b

ds,
d (., dy d oW oW
ZIrZliy =o, 1+ ) —" 22 _ M =0,
ds[ dsj ( ﬂ)dsadﬂ-z A, Mo
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i[T§j+2=0, 1+ u 4 W —ﬂ—/\f0=0,
ds\ ds ds 8% 04,
ds,

by which x, y, z, A1, A2, 43, and sp are defined as functions of s (here, ¢ denotes dL -D.
s

ds,
If we envision — to fix ideas — the case in which X, Y, Z are given functions of only

the letters s, x, y, z then one sees that one may separately determine x, y, z, and the
auxiliary 7 by means of the system of differential equations:

i Tﬂ +X =0, i Tﬂ +Y =0, i Tﬁ +7 =0,
ds\ ds ds\ ds ds\ ds

2 2 2
PROEER
ds ds ds

Once again, we recover the system that was presented in the context of LAGRANGE'S
flexible and inextensible filament, and in the context of the flexible inextensible filament.

21. The deformable line that is obtained by supposing that Mx' is the tangent to
(M) at M. - We may repeat what we said about the passage from the flexible inextensible
filament of LAGRANGE to the flexible inextensible filament of rational mechanics in
regard to the general case and that of arbitrary particular deformations. We shall
consider the following case, which is important in the theory of the strength of materials,
and will lead us later on to the deformable line as was studied by LORD KELVIN and
TAIT, in particular, but only, as we have already observed, from the standpoint of
infinitely small deformations (43).

We refer back to the deformable line of sec. S, and suppose that we have defined the
external force, etc., as in sec. 9. Now imagine that we direct our attention exclusively to
the deformation (M) of (My), where the axis Mx' is tangent to the curve (M) at each
point, and suppose, moreover, and in such a way that these deformations form a
continuous sequence starting with (Mo), that the latter is constructed such that M x, is a

tangent to My. By a convenient choice of the sense in which one understands sy and s this
amounts to supposing that one has:

ax, By e _ A%

a = b b b
(14) 0 dSO 0 dSO 0 dSO
dx . dy , dz
o=— a=—, a =—,
ds ds ds

“ W. THOMSON and TAIT. — Treatise on Natural Philosophy, vol. 1, Part II, 1883 edition, sec. 588 ff.,
pp- 130 ff.
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or that:
ds
(15) n=m=0, ¢&{=4&4=0, &=1, &=

_d_%;

The application of these definitions gives us definite expressions for the external force,
etc.. We may say that the study of these expressions and the problems they lead to by the
repetition of all that has been said constitutes the object of the study of the line that is
subject to the conditions defined by formulas (14) and (15).

Limiting the deformations of (Mj) to those deformations (M) that verify conditions
(14) or (15) or admitting the new conception of a line that is susceptible only to
deformations that verify the preceding conditions are regarded as identical here from the
standpoint of calculations that define elements such as external force, etc. This way of
thinking is absolutely consistent with the principle called solidification, which is
introduced by the authors in the opposite order, in a sense, as we have said.

Before considering the form that the formulas of sec. 9 take here, we establish several
formulas that relate to the triad Mx'y'z’, either under particular conditions or as they
presently present themselves. Suppose that we take the principal normal Mn and the
binormal Mb to the curve (M) at M. If they, along with Mx', form a triad Mx'nb with the

same disposition as the triad Mx'y’z’ then we may designate the direction cosines of Mn
and Mb with respect to the axes Mx', My', Mz', respectively, by 0, cos @, sin w, and 0,
— sin @, cos @, which amounts to saying that we have, moreover:

B =p cosw—-y simw, y=psinw-y cosw,
(16) B =plcosw-y snw y' =psinw-y cosw,

n n " - n n - n
B =pcosw-y/;simw y =p sinw-y, cosw,

upon denoting the direction cosines of Mn with respect to the fixed axes Ox, Oy, Oz
by B,, B, B,,and those of Mb with respect to the same axes by y,,y,,¥,, and upon
introducing an auxiliary variable w as well, which is the angle My' makes with Mn,
taken in a convenient sense.

We may then determine @ by means of the expressions that we already introduced.
The principal normal is the tangent to the indicatrix of P. SERRET, considered to be the
point whose coordinates are 1, 0, 0, with respect to this triad, for which the vertex O is
fixed and the axes are parallel to those of Mx'y'z". The projections of the displacement of

this point onto the axes of the moving triad, or onto those of Mx'y'z’, are:

0, rdsp, —q dso,
and one has:
COS sin @

r r

n

One may obtain more complete formulas upon replacing the cosines S, 4',...,y" in
the formulas (2) of sec. 6 with their expression (16); they become:
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__Z dﬁ Z dﬁl d_w
——Za——costa +smwz /jl

d
SO Z/J’— = coswzp’l——smw cj{—a
s
Le.,
ds, 1 dw
p—=—- )
ds v ds
d .
(17) r% - —y,
ds, cosw
r——=—,
ds o,
upon setting
1 da 1 dp,
o, Z“/))lds’ T_Zyl ds
and recalling that Za =0. The expressions E and 1 are equal in absolute value

o, T
to the curvature and torsion (the cambrure of BARRE DE SAINT-VENANT and the
tortuosity of THOMSON and TAIT) of the curve (M) at M; the latter two formulas (17)
correspond to the remarks made by THOMSON and TAIT (44).
We arrive at the formulas of sec. 9. For the moment, denote the function that W
becomes when one takes conditions (15) into account by Wi, i.e., set:

Wl = [W(SO’ g) n, é.’p’ q, r)]T7=0,C=0 = W(SO, ga Oa Oap’ q, I").

Furthermore, upon remarking that from formulas (14):

ds
=—=1+yu,
& s, 1%
we set:
Wl = W(SO, 1 +ﬂa0aoapa q, r)'
We have

F{ﬂ} _aW oW, G,{ﬂ} ,
a§ 17=0,5=0 a§ a‘u 877 7=0,5=0

* W. THOMSON and TAIT. — Treatise on Natural Philosophy, vol. I, Part II, 1883 edition, sec. 590, pp.
131.
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I
¢ 7=0,6=0 ap 7=0,6=0 ap
J,{ﬂ} _m K{ﬂ} _w

aq 7=0,5=0 aq ar 7=0,5=0 or

If we would therefore like to introduce only the function Wiy, i.e., the value taken by
W at n=_{= 0, and if we suppose that one is not given the values that are taken by the

derivativesﬂ,ﬂ for 7=C= 0 then we find ourselves in the presence of six

an  d¢
expressions, where only four of them, F',G',J',K’, may be considered as given, and two
of them, G',H’, are left to be determined (*). In other words, knowledge of W; uniquely
entails knowledge of the tension effort F“and the moment of deformation(/',J",K").

If we introduce the expressions F', G, H, I, J, K then we may say that the first three are
three auxiliaries, in regard to which, one knows simply that one has *):

(18) Fﬂ+Gﬂ+Hﬂ=ﬂ,
ds ds ds ou

and the last three may be calculated by means of one of the systems:

aI+a'J+a”K=ﬂ, I=aaW+/J’aW+}’aW,
op ap dq or
’ " ’ ,aW ,aW ,GW
(19) /3’I+/3’J+/5K=ﬂ, (199 J=«a + +y ,
dq ap dq ar
yI+y'J+y”K=ﬂ, K=a”aW+/3’”aW+y”aW,
or ap dq ar

where a,a',a”,...,y" are defined by formulas (14) and (16).

The external force and moment result from them by the formulas of sec. 9 and 10, in
the measure where they may be determined when W alone is given.

Suppose that one is presently given the external force and moment. The equations:

*_ If we admit that we know only the function W, then we may suppose that we ignore the existence of the
function W that has served as our point of departure, since that function is, in a sense, hidden, along with
the positions of the triad Mx'y'z' for which Mx' is not tangent to the curve (M).

46. From now on, we denote the function W, of sy, &, p, g, r by W.
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oy b o
ds ds ds ds

(20) d—G—Y=0, d—J+F£—H§—M=O,
ds ds ds ds
d—H—Z=0, d—K+G@—Fﬂ—N=O,
ds ds ds ds

combined with equations (18) and (19), and the relation:

2 2 2
FRERER
ds ds ds
provide a system of eight differential equations in five of these variables (as functions of
the sixth) and of F, G, H when X, Y, Z, L, M, N or Xo, Yo, Zo, Lo, My, Ny are given
functions of so, s, x, y, Z, @, and the derivatives of these variables with respect to each
other.

If s does not figure explicitly in the given functions then one may use (21) to
eliminate ds and, upon taking so, for example, to be the independent variable one will
have a system of seven differential equations that define the seven unknowns x, y, z, @,
and F, G, H.

In the case at hand, where the function W that we started with is hidden, the
expressions F, G, H are simple auxiliary functions that are defined by the differential
equations of which we speak; we may propose to eliminate them. However, that
elimination is easy, since they figure linearly and their derivatives are excluded from

relation (18) and the three relations on the right-hand side of (20); these four relations
give:

N L

ds ds ds ds ds

ooorf( {35

22) s s s s s
oo (N[

ds ds ds ds ds

ﬂ—L ﬁ+ d—J—M Q+ d—K—N £=O.
ds ds ds ds ds ds
To abbreviate the notation, we set:

23 T=-—,
(23) ”

from which, by elimination of F, G, H we obtain the system of four equations:
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A g [AK N[44 | x 2o,
ds_ ds \ ds ds \ds ds

(24) A gDy (A= [Ny o,
ds_ ds \ds ds \ ds ds
R A YR L B o
ds_ ds \ds ds \ds ds

(25) LY (A O LS N )
ds ds \ds ds ds ds

in which we have replaced I, J, K, T with their values from (19') and (23), and which,
with (21), form a system of five differential equations that relate five of the variables so,
s, X, Y, Z, w, to the remaining one. If s does not figure in the given variables explicitly
then one may use (21) to eliminate ds, and relations (24) and (25) provide four
differential equations that define x, y, z, was functions of sy .

22. Reduction of the system of the preceding section to a form that one may
deduce from the calculus of variations. — In the preceding section, we finally found a

function W which, by the intermediary of wu, p, ¢, r, depends upon
d w dx d’x
ds ds0 ds]
Observe that upon taking these latter arguments into account, equation (25) may be
written:

as well as on sp.

d| ow _aW+[Ld+M dy Ndzj 0.
ds ds ds

We examine whether successively combining each of equations (24) and (25) will give
three equations that are susceptible to being deduced from the calculus of variations
directly, i.e., equations such as the following:

d* oW d® oW d W
dsOadx dsOadx dsoai
ds; ds; ds,

_X0+...=0,

where the terms not written depend only upon the external moments.

If we remark that the equations considered refer to derivatives that are of order at
most five then one sees that one must seek to introduce the third derivatives of equations
(25), which may be written:
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d (oW +an_raW (L@ Mody N, dzj 0,
ds, \ dp or g ds ds ds
or

V=

d (aw} oW oW

-r -L =0,
ds, \ op 7 or oq 0

with the notation of sec. 9.
Consider the first equation of (24); it is written:

A g B[ K IS | & -M, la"|-X, =0,
ds, ds \ ds, ds \ ds,

i.e.,
U=L—Ta+ds° ydaW_ d oW }/ldaW d oW pyaW
ds, ds \" ds, dq ds, ar p ds, ap ds, dq or
_d
SO( N, -a'M )} , =0.
3
Upon forming the first term ————+---one easily confirms, by a calculation whose
s, PR d’x
ds,

details will not be given here, that the combination:

d2 }/lp V +i ds(?

dsy |(ds\ dsy | ((ds

ds, ds,
reproduces the different terms of the expression in question, as well as those that go to
zero with the external forces.

If we set:
}’Pdizs
2 1 2
PR UL b (T-E 30 SRS Ry S [‘“0( ‘N, -a'M )}
ds; ds ds, ds ds,| d
ds, ds,

and if we designate the analogous expressions that are obtained by replacing Xo, 71 with
Yo, }’1/ , and then 7y, yl”,respectively, and then making the required permutations in the

last term by )b, Zo, we obtain the system in the following form:
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d3 oW d* oW d oW

-&,=0,
ds()adx dsOadx dsoad
dSO dso dso
d oW d® oW d oW 3 -0
ds()ady dsOady dsoad o
dSO dSO dso
3 2
d oW d” W d oW _z, -0,
dsOGdz dsOadZ dsoad
dSO dso dso
d oW —6W+[L0@+Mody N, dzj 0,
ds, adﬂ dw ds ds ds
ds,

which one may summarize in the formula:
[ OW + X,0x+ Y0y + 2,02~ Ldw)ds, =0

where one considers only the terms that ultimately present themselves under the integral
sign (47).

This summarized form to which one is led, and which must be treated according to
the rules of the calculus of variations, is particularly convenient for the purpose of
effecting changes of variables.

Upon supposing that Xy, Yo, Z, L, are of a particular form, one will have the

equations for the extremals of a problem of the calculus of variations.
If we consider the case in which U denotes a function of x, y, gz,

0{—1ﬂ a' = ldy a”=lﬁthen we have:
gds() gdso gdso
X, -2, YO:&, , U
ay 0z
l( _yj 0U _adU dx U dy oU dz
3 ds d da E\dads, da'ds, da"ds,)|

2

* One has a formj l (0T +U")dt = 0 for HAMILTON’S principle that is analogous to the one that was
lo

given by TISSERAND, pp. 4 of Tome I of his Traité de Mécanique céleste.
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l[N@- @j_ 0U__1|U _a'(9U dx 9U dy U d
EU%ds ds aﬂ Eloa’ E\dads, oda'ds, da"ds,)]
ds,
l[L@-M@j— 0U__1]0U _a'(9U dx | U dy U d:
£\ ds *ds aﬁ Eloa" &\ dads, da'ds, da"ds,)]
ds,
P, YN g
ds, ds, dso
or, what amounts to the same thing:
_9U. _Iv _u
ay D) 0 aZ D)
() () ()
Ja Ja oa oa
One then has:
ou d iU ou d iU U d dUu
S d. ’%____—d’ 0T oz d
dx dsoal ady dsoal 0z ds(Ja Z
ds, ds, ds,
as the extremal equations relative to the integral:
[w +U)ds,.

Another particular case, which one may combine with the preceding, is the one in
which W is of the form Bp + (p(q2 +7°, &, where B is a constant. W may then be written:

Bp + I/J(S(), 5’ p)

If one supposes, in addition, that I, =0 then the four equations reduce to three, since the

fourth equation reduces to an identity.
The case that we will now examine comprises, in particular, the one in which W is of
the form,

1
A—2+C,

e,

with A and B constant. This amounts to the case considered by D. BERNOULLI, and
later by EULER; it is the case that inspired SOPHIE GERMAIN and POISSON in their
researches on elastic surfaces.
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23. The inextensible deformable line where Mx'is the tangent to (M) at M. —
Instead of simply supposing, as in the preceding case, that one has introduced conditions
(14) and (15), we may suppose, in addition, that the line is inextensible, which, by virtue
of (14), amounts to adjoining:

E=1.

If we admit that one knows only the value of the function S(so, & 7, &, p, g, r) for &=
1, =0, £=0, or then again, starting with the line of the preceding section, to which we
adjoin the condition ¢ = 0, that we know simply the value of the function W; for =0
then we see that all three of F, G, H become indeterminate and we presently have either
equations (20), where 1, J, K are replaced by the values (19"), in which W denotes W(so,

1, 0,0, p, g, r) or (Wi)u—0, and which form, with relation (21), a system of seven
differential equations that define the unknowns x, y, z, F,, G, H as functions of s = 59, or
equations (24) and (25), where I, J, K are replaced by the same values (19'), and which,
with relation (21), a system of five differential equations that define the unknowns x, y, z,
w, T as functions of s = sg.

However, the system so obtained coincides with the one that was introduced by
THOMSON and TAIT (48), upon supposing that W(so, 1, 0, 0, p, g, r) is obtained by the
substitution of the values of po, go, ro as functions of sy into a quadratic form (with
constant coefficients) in the expressions p — po, ¢ — qo, ¥ — ro . This is what we will arrive
at if we suppose, for example, that the expression W, at the beginning of the preceding
section is obtained by substituting the values of po, go, ro as functions of sy for these
variables in a quadratic form in p(1 + @) — po, g(1 + @) — go, r(1 + ) —ro.

Observe, in addition, that in the applications made by THOMSON and TAIT of the
considerations in their sec. 614, namely, for example, the application made in sec. 616,
they put themselves in the case of an infinitely small deformation; we therefore recover,
in a completely natural way, the applications mentioned by starting with the function W
in general and considering infinitely small deformations.

Here we may develop considerations that are analogous to the ones relating to the
preceding line; the only difference is that one adjoins:

ax) (dy) (dzY
all I L T
ds, ds, ds,

One presently arrives at the formula:

[ OW + X,0x+ R0y + 2,07 - Lidw)ds, =0,

which must happen by virtue of the fact that:

* THOMSON and TAIT. — Treatise on Natural Philosophy, Vol. I, Part. I, sec. 614, pp. 152-155.



52 THEORY OF DEFORMABLE BODIES

ax) (dy) (dzY
N L Y 1,
ds, ds, ds,
and where &), )b, Zo have a significance that we shall describe.
Indeed, the equilibrium system of equations is equivalent to the following:

d3 oW d2 oW d oW de

-T—|-X, =0,
ds; ad x d’x ds0 o4 ds,
ds, ds; dso
3 2
d aW d ow d GI;V —Tﬂ =0,
ds0 24y d’y ds0 PROA ds,
ds, ds; ds,
3 2
d oW d° W d ow —Tﬁ _z, -0,
ds; ad 2 ds ad z ds(J g4z ds,
ds, ds; dso
d _ow —6W+L0§+M0 & +N,— dz =0.
ds, ,do  dw ds ds ~"ds
ds,
where one must set:
2
X, =X, +— (ylpLO)+—(aN -a'M,)
ds, ds,
2
X = 2(}’1/01«))+—(0!”N -aM,),
d ds,
2
Zy=Z,+ (}’{Ipl‘o)"‘_(aN -a'M,) .

ds? ds,

24. Case where the external forces and moments are null; particular form of W
that leads to the equations treated by Binet and Wantzel. — Instead of using equations
(24) and (25), it may be more convenient to recall the equations we began with; it may
also be useful to appeal to the geometric interpretation.

For example, suppose that Xy, Yo, Zy are null. One concludes from this that F, G, H
are constants equal to the values F, .G, ,H, that they take at the one of the extremities

Ao, and one has three equations:
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A b g b
ds, ds, ds,
A
ds, ds, ds,
W oA
ds, ds, ds,

which are the primitive equations and actually result from the elimination of 7 from (24)
and (25).

If one has, in addition, that Ly, My, Ny are null i.e., if the deformed (M) is subjected
only to forces applied at its extremities, then we have:

I+H, y-G, z=const.,
J+FA0z—HA0x=c0nst.,
K+G, x-F,y=const.,

relations that one also obtains from the geometric interpretation of the equations by
means of formulas such as (49):

MO
Ly —Hy vy =Gy 2y =1y +H, v, -G, 24 _LO Yoz =Zyy - Ly)ds,.

Having made these remarks, consider the case where the function W of sy, p, ¢, r is of the
form (50):

LA@G@ +r)+Bp+C,

where A, B, C are constants. One will have:

* One will observe that the reasoning of BERTRAND (Sur I’équilibre d’une ligne élastique, Note III of
the Mécanique analytique of LAGRANGE, pp. 460-464 of Tome XI of Oeuvres de LAGRANGE) amounts
to the use of these formulas, or, more precisely, to equivalent ones such as:

/I -1 =G z -H y -G z +H vy
M A A M AM A A AT A
0 0 0 0 0 0

M M M .
- .[A 0 (Yoz - ZOy - L0 )als0 + y0 IA 0 Zods0 —zO IA 0 Yods0 ;
0 0 0

it suffices to refer to sec. 9, where we said that the effort and the moment of deformation at A, are
(F'" ,G'" ,H' ),d' ,J' ,K' ), ie.,thevaluesof (F',G'.H"), (I',J',K'") atA,.
A A A A A A
0

0 0 0 0 0

% If W is obtained by replacing py, qo, ro With their values as a function of p — py, ¢ — qo, ¥ — 1 then we
suppose that pg = go = ro = 0, in such a way that (qo)2 + (r0)* = 0, and the curve (M) is a straight line.
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I' =B, J' = Aq, K' = Ar;

the vector (I',J',K") or (I, J, K) is the resultant of a constant vector equal to B that is
directed along the tangent Mx “and a vector that is directed along the binormal and has the

A .
same absolute value as —. The three equations:
Yo,

I+HAOy—GAOz=c0nst., J+FA0z—HA0x=c0nst., K+GA0x—FAOy=c0nst.,

are, up to notations, identical with the equations:

2 2
pdydz 2dzd y=6ﬁ
ds’ ds

dzdzx—dXdZZ dy
p . =0—+az-cx+b,,
ds’ ds
2 2
pdxd y zdyd X=,9£+bx—ay+cl,
ds’ ds

+cy-bz+a,,

that were considered by BINET (*'), WANTZEL (°*), HERMITE (**), in which p, 6, a, b,
c,a, by, ¢ are constants.

In the previously cited note, which placed us in the realm of the analytical mechanics
of LAGRANGE, and where we were said to have imitated a method discussed by
POISSON in the article that was mentioned in sec. 10, and recalled in the following
section, J. BERTRAND has treated, after WANTZEL, the case where the three
equations:

cy—-bz+a =0, az—cx+b; =0, bx—ay+c =0,

represent a straight line; if this straight line is identified by:

Ha(y — ya) — Ga(z — za) = 14,
Fu(z — z24) — Ha(x — xa) = Ja,
Ga(x —x4) —Fa(y —ya) = Ka

then the preceding hypothesis amounts to:

FAIA + GAJA + HAKA = O’

>l J. BINET. — Mémoire sur I'intégration des équations de la courbe élastique B double courbure

(Extract), C.R., 18, pp. 1115-1119, 17 June 1844. Réflexions sur l’intégration des formulas de la tige
élastique B double courbure, C.R., 19, pp. 1-3, 1% July 1844,

> WANTZEL. — Note sur I'intégration des équations de la courbe élastique B double courbure, C.R., 18,
pp- 1197-1201, 24 June 1844.

> Ch. HERMITE. — Sur quelques applications des functions elliptiques, C.R., 90, pp. 478, 8 March 1880;
see also the work of that title that appeared in 1885 (see sec. 35).
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and this amounts to supposing that the couple (4, Ja, K4) and the force (Fa, Ga, Ha)
reduce to a unique force.

From relation (2) on page 463 of LAGRANGE, this line, when it is of issue, does not
encounter the curve (M); this remark was made by J. BERTRAND in the case where he
defined it. What might appear strange is that a hypothesis is preserved at the top of page
462 that, from the note on page 463, entails the relation #=0.

Upon supposing that the constant & of BINET is null, i.e., with our notations, upon
making B = 0, one has the particular curve considered by LAGRANGE.

Observe that in the present case the unknown that we have denoted by w does not
appear in the equations; however, the three equations:

a +H 2 -G ! =0,

ds, ds, ds,

reduce to two because upon multiplying them by 3 ,ﬂ ,ﬂ and adding them one gets

s, ds, ds,
zero for the particular form of /, J, K that was considered in the last example.
We recover the preceding line in the following section; this leads us to remark that
one may present the following as it is.
We seek the case in which the effort of deformation of the line in the preceding
section is perpendicular to the principal normal.
We have the condition:

P W W
aq or

0.

If we suppose that this condition results from the nature of the line, i.e., from the form
of its W, then this condition is a partial differential equation that is verified by W, from
which W must depend on g and r only by the intermediary of ¢* + r*. If this condition is
verified then, from the remark of POISSON that we recalled in sec. 10, the equations of
the problem entail that

I’ = const.

If we suppose that this conclusion results from the nature of the line, i.e., the form of
its W, then this amounts to the condition:

w_,

ap
where B is a constant, and we find
W=Bp + ¢,
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where @ is a function of ¢° +r> = Lz; upon supposing that g is of first degree in g° + r*
P

we recover the W that served as the point of departure for this section.

25. The deformable line for which the plane Mx'y'is the osculating plane of (M)
at M; the case in which the line is inextensible, in addition; the line considered by
Lagrange and its generalization due to Binet and studied by Poisson. — We may
proceed further with the hypotheses that were made for the deformations of a deformable
line. Instead of assuming simply that Mx' is tangent to the curve (M), we may suppose
that the plane Mx'y' is the osculating plane to the curve (M).

1. First, leave aside the hypothesis of inextensibility. Assume that one still has
relations (14) or (15), and, in addition:

q=qo=0.

If, for the moment, we let W, denote the function that is obtained by setting 7= =g =0
in W, or ¢ =0 in W, then we have:
Pl ow, I ow, K- ow, ‘

ou ap or

As for G',H',J’,they may be calculated if W, is the only given, and may be considered
as three auxiliary variables that are defined by the equations.

In the present case, equations (20) are combined with relations (18), (21), and the
following:

1 =aﬂ+ﬁJ'+yﬂ,
op or

(26) J =a'ﬂ+ﬁ7'+y'ﬂ,
op or

K — a”ﬂ-l- ﬁli]/ + }/Ilﬂ,
op or

in which W designates the expression W, takes when X, Y, Z, L, M, N or Xy, Yo, Zo, Lo, Mo,
Ny are given functions of so, 5, x, y, z, and their derivatives with respect to one of them— a
system of eight differential equations in four of these variables (as a function of the fifth)
and F,G,H, J'.

As in the preceding, we may eliminate F, G, H, and what remains are the four
equations (24) and (25), in which we have replaced I, J, K, T with their values from (26)
and (23), and which, with (21), form a system of five differential equations that relate
five of the variables s, 5o, x, v, 2, J” to the other one.

2. In addition, introduce inextensibility by the relations:
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E=5=1.

Continue to designate the function W(sop, 1, 0, 0, p, 0, r) by W and suppose that this
function alone is continuous. We simply have the relations:
I'= ﬂ, K'= ﬂ
op ar

Asaresult,if X, Y, Z, L, M, N or Xo, Yo, Zo, Lo, Mo, Ny are given functions of so, s, x,
v, Z, and their derivatives with respect to one of them then we have the seven equations
(20) and (21), where 1, J, K are replaced by their values from (26), and which determines
the seven unknowns x, y, z, F, G, H, J’ as functions of sy, for example. Upon eliminating
F, G, H, we have the four equations (24) and (25) that define the four unknowns x, y, z, J’
as functions of sy.

It is easy to deduce the cases that were envisioned by LAGRANGE, BINET, and
POISSON from the case we shall now consider.

Suppose that the given functions L, M, N are null; the three right-hand equations of
(20) form a system that is equivalent to the following:

d—l—rJ'=0,
/ ds
di+rl'—pK'—H'=0,
ds

K/ ! !
d—+pJ +G =0,
ds

which the system of sec. 10 reduces to; just the same, one or two of these three equations
may replace one or two of the equations on the right-hand side of (20), in general.
In particular, the relation:
I )
(27) ar _ rJ' =0

ds,

that is obtained by adding the three equations on the right-hand side of (20), after

multiplying them by « = %,a' = %,a” = %, may be substituted for any one of the
s s s

aforementioned right-hand equations of (20), in general.
Having said this, suppose first that the function W of s, p, r that presently figures in
relations (26) does not depend on p. We will have I' =0, and relation (27) will give

J =0 upon supposing that r = 0. Hence, in the present case, the moment of deformation
is directed along the binormal to the curve (M). In equations (20), we have replaced 1, J,
K by the values:

aW /aW ”n ”n aW
I=y——, J=y — K =y —.
4 or 4 or 4 or
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The three right-hand equations of (20) reduce to two.

We thus obtain the case envisioned by LAGRANGE in no. 46 and the following ones
of sec. III, chapter III, first part, section V, of his Mécanique analytique (pp. 162, et seq.
of Tome I of the first edition).

It might be useful to show the identity with the exposition of LAGRANGE. We may
suppose:

I=J(dy d’z-dz d%),
J=Ji(dz d’x - dx d'2),
K = Ji(dx d&*y — dy d*x),

since the vector /, J, K is perpendicular to the osculating plane of (M).
The right-hand equations of (20), which may really be written (L =M =N =0):

dy d(J; d’2) —dz d(J, d*y) = - Hdy + G dz,

dz d(J, d’x) —dx d(J, d’*z) = - F dz + G dx,

dx d(J, d*y) — dy d(J, d*x) = - G dx + F dy,
or

d(J, d’x)+F d(Jd’y)+G d(J,d’z)+H
1 = =

dx dy dz
which permits us to set:
Foa® d(J,d’x),
ds
G = 29 _ d(J,d’y),
ds
dZ 2
H=A—-d(J,d"z2),
ds

after introducing an auxiliary variable A.
If we transport these values into the three left-hand equations of (20) then we recover
the equations that were given by LAGRANGE at the beginning of his no. 48:

Xds —d%+d2(J1d2x) =0,
S

Yds—d%mzuldzy) =0,
\)

Zds —d%+ d*(J,d*z) =0.
S

In the preceding theory presented by LAGRANGE the moment of deformation is
normal to the osculating plane. BINET (**) has proposed to consider the case where this

> J. BINET. — Mémoire sur I’expression analytique de I’élasticité et de la raideur des courbes B double
courbure (Bull. De la Soc. Philomatique, 1814, pp. 159-160; Journ. de I’Ec. Polyt., , Note 17, T. X, pp.
418-456, 1815).
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moment of deformation is simply perpendicular to the principle normal. On the other
hand, BINET supposed that the line elements were subject to external forces in a way that
we shall also do in the case where L = M = N = 0. From (27), the hypothesis J "= 0 that
was made by BINET entails that

I' = const.

This result, as we pointed out in sec. 10, in the general form that is independent of W,
and which is due to POISSON (55), may come about either because of the specification of
the forces or the specification of W.

If we assume the latter case, we have:

W = ¢(so, r) + mp,

where m is a constant; as a result:
) , 0
I'=m, K = _(p‘
ar

With this hypothesis, one sees that if 7 = O then condition (27) amounts to saying that the
unknown J is equal to zero, and, as a result, one has to replace /, J, K in equations (20)
with their values:

I =om+ ya—(p,
or
J=am+ y'a—(p,
or
K=am+ }/"a—(p,
or
and the three right-hand equations of (20) reduce to two. In particular, if Z—(p is derived
r

from an expression of the form n(r — rp), where n is constant, and if one replaces ry as a
function of sy then one has the hypothesis that was explicitly made by BINET and
POISSON. Upon supposing, in addition, that the curve (Mp) is a straight line and that the
external forces are null, in such a way that the transformation of (My) into (M) comes
about only from forces and moments applied to the extremities, one recovers the problem
treated by BINET and WANTZEL, upon which we previously stopped.

Upon supposing that m = 0 in all of what we proceed to discuss we revert to the case
of LAGRANGE.

26. The rectilinear deformations of a deformable line. — If we suppose that (Mp) is
a straight line then we must direct our attention to the deformations (M) that are likewise

> POISSON. — Sur les lignes élastiques B double courbure, Correspondance sur I’Ecole Polytechnique, T.
III, no. 3, pp. 355-360, January, 1816. This work may be considered as destined to complete what preceded
it, which was due to BINET.



60 THEORY OF DEFORMABLE BODIES

straight lines such that, in addition, the axis Mx’is directed along the line (M) and M  x;
is directed along (M).

1. If one first supposes that the line is extensible, then we have:
n=m=0, &=&=0, ¢=g=0, r=r=0.
Upon continuing to denote the function W(so, 1 + 1, 0, 0, p, 0, 0) by W, we have:

W LW

F' , .
ou ap

As for G',H',J',K', they may be calculated by means of only the knowledge of the
function W(so, 1 + ©, 0, 0, p, 0, 0). If this function is the only given one must consider

G',H',J',K' as four auxiliary variables that are defined by the equations.

In the present case, when X, Y, Z, L, M, N or Xy, Yo, Zo, Lo, My, Ny are given functions
of so, s, x, y, z, and the derivatives of these variables with respect to one of the others,
equations (20), combined with relations, (18), (21), and the following:

I =aﬂ+/3’J'+yK',
ap
(28) J=a'ﬂ+/3"]'+y7(',
ap
PRy
ap

provide a system of eight differential equations in four of the above variables (as a
function of the fifth) and w, F, G, H, J',K'; in addition, one has two first degree
equations (whose coefficients are to be determined) in x, y, z.

As before, one may eliminate F, G, H.

A particular case is the one where (M) coincides with (Mp) point-by-point
(coincidence of the triad vertices).

2. In addition, if one introduces inextensibility by the relations:
E=&=1,

and if one continues to denote the function W(so, 1, 0, 0, p, 0, 0) by W, one will have,
upon supposing that only the this latter function is known, simply the relation:

=W

ap'
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ItX, Y, Z,L,M,N or Xo, Yo, Zo, Lo, My, Ny are given functions of s, s, x, y, z, and the
derivatives of these variables with respect to one of the others then we have seven
equations (20) and (21), where I, J, K are replaced by their values (28) and which,
combined with two relations of first degree in x, y, z (with the coefficients to be
determined by accessory conditions) determine the nine unknowns x, y, z, @, F, G, H,
J',K' as a function of so.

As before, one may eliminate F, G, H.

27. The deformable line obtained by adjoining the conditions p = py, g = qo, r =
ro, and, in particular, p = po =0, g =¢qo =0, r = ro = 0. — This deformable line may be
studied in various fashions, either by considering the deformations (M) of the general
deformable line that verify the indicated conditions, or by starting with W in general and
defining a new line by the consideration of the stated conditions, or by starting with W as
a function of 5o, & 7, £, and defining the line that conforms to these conditions.

Imagine the first viewpoint. For the moment, designate by W; what W becomes when
one takes the conditions:

P = Do, q = 4o, r=ro,
into account; i.e., set:

Wl = [W(SO ’g’n’g’p’q’r)]p=p0,q=q0,r=r0 = W(SO aganagapo ,q() ’r())‘

We have:
Fe ﬂ} _ W, ,{ﬂ}
- a§ P=Po-4=40-"=" a§ ap P=Po-9=490."="
G ﬂ} _ W, J{ﬂ}
- a 77 P=Po-4=40 "= a 77 aq P=Po-9=490."="
H' = ﬂ} = w, K’_[ﬂ}
- ag P=Po-q=49 "= ag ar P=Po-9=490."'="

Therefore, if we would like to introduce only the function W, of so, & 1, ¢, i.e., the
value taken by W for p = po, ¢ = qo, r = 1o, and if we suppose that we are not given the

.. W oW )
values taken by the derivatives ﬂ,a—,— for p = po, ¢ = qo, r = ro then we find
dp dq oOr
ourselves in the presence of six expressions, only three of which F',G',H ' may be
considered as given, and three of which I',J',K" are left to be determined.

The equations in question are then:

d (oW, ow, ow, ,
*+ 4 -7 - X, =0,
ds,\ 0& s an

d (aWIJ W, W,
+7,
ds,\ on
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oW, oW,

S -+ po I_CIOGWI_Z(;=O’

ds,\ d¢ an &
d—l+q0K’—r0J’+7yaW1 —gaW‘ -L, =0,
ds, ac on
di+"ol'—poK’+§aW‘ —§aW‘ -M; =0,
ds, & g
dK' oW, oW,
—+p,J =g, 0+ L L-N) =0,
ds, Do qy & on n Y 0

to which we must add p = po, ¢ = qo, r = ro, and which give us, in all, nine equations in
the nine unknowns x, y, z, A1, A&, A3, I',J',K .

The last three formulas are similar to the ones for what MAXWELL has called the
magnetic induction in the interior of a magnet.

In the particularly simple case p = po =0, g = qgo =0, r = ryp = 0, the preceding
formulas take a very simply form.

28. Deformable line subject to constraints. Canonical equations. — In all of the
foregoing, we have considered a deformable line that we have qualified as free, i.e., the
theory was developed without the intervention of external elements, and by means of a
function W that is defined by the elements of the line in its natural and deformed states.

Directing our attention to certain deformations, upon adding the notion of a hidden W
we may recover the equations that were proposed by the authors for various lines.

Instead of this exposition, we may give another in which, instead of considering the
deformable line of sec. 5 and 9 for which the deformations satisfy certain definite
conditions, we imagine a sui generis deformable line, where the definition already
accounts for the definite conditions satisfied by the particular deformations of the
preceding line.

Here is how we proceed to define the new line, while remaining in the same general
neighborhood as before.

First, observe that the conditions imposed on the functions x, y, z, a,a’,---,y" may be
of two kinds: 1. conditions between functions and their derivatives (56), for any so . 2.
conditions satisfied for certain values of s.

We restrict ourselves to conditions of the first type.

To fix ideas, let

fi=0, f2=0

be two conditions or equations of constraint. Instead of constructing the preceding
expressions that we defined by means of the identity:

j:"(ssto —[F'8%+G'oy+ HOz+1'0I'+ J'8J + K'SK'|"

56 .. . . .. . . . .
Our exposition is not concerned with the distinction between holonomic and non-holonomic constraints.
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~[(X k4O + 2654 Lol + MS + N'SK ),

as functions of sy, where we introduced F'.G'.H',I',J',K";X",Y'.Z'.L'M',N', to fix
ideas, we say that - by definition — the preceding identity must make sense by virtue of:

fi=0, =0,

or again that — by definition — we imagine a deformable line such that the theory results
from the consideration of a function W(so, & 7, &, p, g, r) and two auxiliary functions A,,
Az of sy, by means of the identity:

j:’(éw + A0, + 20, )ds, = [F'8%+G'dy + H'S7 + I'1' + '8 + K'0K']%

- [( XS4y + 2’654 LSl MS + N'SK ),

where, this time, all of the variations are arbitrary; we must then add

fi=0, £=0,
a posteriori.

Observe, moreover, that in the case where certain of the left-hand sides fi, f2, ..., of
the equations of constraint refer to only the arguments that figure in W, one may conceive
that either one proceeds in a manner as we shall describe, or that by a change of the
auxiliary variables one introduces the data of these equations with particular constraints
into W a priori; this brings us back to the notion of a hidden W. We stop ourselves at this
point in the particular cases that follow and where the present remarks apply.

1. FLEXIBLE AND INEXTENSIBLE LINE. — Start with a function W of

u =£—1and so, and add the condition that © = 0. We define the functions

ds,
F'.G',H',X'Y',Z' by starting with:

j:)(éw + Adu)ds = [F'x +G'8Yy + H'6%]"

- j:"(x(;ééc LSy +Z.8%)ds, .

This amounts to replacing W with W, = W + Au in the preceding, and it leads to the
formulas:
oW, G oW, H oW,

Ry )z
ds, ds, ds,
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Ay Lo dG_y o dH_,
ds, ds, ds,

in which we have taken u = 0 into account, and which thus determine F, G, H, Xy, Yo, Zo.

As one sees, we come down to a theory of the flexible inextensible line that
generalizes the theory of LAGRANGE, which corresponds to the function W, of so and ,
and where we limit ourselves to the study of deformations that correspond to ¢=0. If we
take the case in which W, is hidden then we suppose that one knows simply the value
Wo(so) that W and W, take simultaneously for « = 0, and we therefore have the classical
system of mechanics.

Observe that if, in order to construct the flexible inextensible line, we take the
condition « = 0 into account in W, a priori, by a change of the auxiliary variables, then
we are led to replace W with A in the calculations relating to the general deformable line,
and we arrive at formulas that lead furthermore to the study of the flexible extensible
filament, where we limit ourselves to considering deformations that correspond to u = 0;
upon supposing that A4 is unknown, these formulas also lead us to the classical system of
mechanics.

We conclude with the following remark. Suppose that, by virtue of the formulas that
define the deformation, one has expressed Xy, Yo, Zo as functions of so, x, y, z in such a
way that Xo dx + Yo dy + Zy dz is the total differential of a function ¢ of so, x, y, z with
respect to x, y, z. Suppose, in addition, that we are dealing with the case of the hidden
W1, or in the case envisioned in the latter context, in such a way that we are reduced to
the case of mechanics. From the foregoing, one recovers the remark that served as the
point of departure for CLEBSCH (57) that the equations in question, in which Xy, Yo, Z
figure, are none other than the extremal equations of the problem of the calculus of
variations that consists of determining an extremum for the integral:

By
.[40 s,
2 2 2

dx dx dx

+ + =1.
ds, ds, ds,
1 ax (av) ()

1//1 =—-= al + y + < _1 s

2|\ ds, ds, ds,

under the condition (58):

If we set:

" A. CLEBSCH. — Uber die Gleichgewichtsfigur eines biegsamen Fadens, Journ. fiir die reine und

angewandte Math., T. LVII, pp. 93-116 [1859], 1860.

> We must distinguish between the present question and the one treated by APPELL, Traité de Mécanique
rationelle, T. 1, 1" ed., sec. 158, pp. 205 ff.; 2™ ed., sec. 146, pp. 201 ff.
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and apply the considerations developed by JORDAN (*”), we may reduce this system to
its canonical form. If we put A; in place of T then the system expresses the idea that one
nullifies the first variation of the integral:

B,
'[Ao F ds,
upon setting:
F=- (¢+ ﬂ.ﬂ/}l).
The equations:
oF » oF » oF » Wi =0
=/ 7 = Vo> = V3> 1=Y,
N
ds, ds, ds,
permit us to express the variables x' = ﬂ, y' = ﬂ, 7= ﬁ,il as functions of the
ds, ds, ds,

variables x, y, z, p1, p2, p3 by means of the formulas:

A= 2+ 2+ 2, X/=&, /=&, ZI=&'
1 =\VP1 TPt D; 2, y 2, 2

If we substitute these values into:
X +p,y +pz -F,

H =@(sy,%,9,2) + Pf + D3 + D3,

and upon denoting the coordinates x, y, z by g1, g2, g3, as in APPELL (60), we have the
equations (which are canonical if sy does not figure in ¢):

we obtain the function:

dq, _ H dp,

oH

dSO ap v , dSO GQV

to determine the variables x, y, z, p1, p2, p3 .
As one sees, we recover the results that were obtained by APPELL (°), in a simple
form that was first given by LEGOUX (°%), and then by MARCOLONGO (%), and from

> JORDAN. — Cours d’Analyse de I’Ecole Polytechnique, T. 111, 2" edition, no. 375, pp. 501, 502.

8 APPELL. — Traité de mécanique rationelle, 1* ed., T.1I, Exercise 14, pp. 48-49; 2" ed., T. I, Exercise
14, pp. 583-584.

' APPELL. — Reduction a la forme canonique des équations d’un fil flexible et inextensible, C.R., 96, pp.
688-691, 12 March 1883; Traité de mécanique rationelle, loc. cit.
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which one may pass to the method of JACOBI and the results given in the first place by
CLEBSCH, in the previously-cited memoir (64).

One may also present the preceding exposition as we did for the dynamics of a point
in our first Note and for the deformable line in general.

Begin with the equations:

iTﬁ +XO=O’ i ﬂ +YO=O’ iTﬁ +ZO=O,
ds,\ ds, ds,\ ds, ds,\ ds,
or rather, the system that gave rise to them:
Ford Gogd g pde
ds, ds, ds,
dF _y o 4Gy o dH_, o
ds, ds, ds,

which may be considered as defining the six unknowns x, y, z, F', G, H. Suppose that X,
Yo, Zy are given functions of so, x, y, Z.

If we add the three equations of the first line, after squaring, then we see that 7 is
defined as a function of F, G, H by the relation:

T°=F +G +H,
from which, it results that:

F or G oT H T

T OF T oG T oH

The normal form of the system considered is, as a result:

dx  0H dy  0H dz  oH
ds,  OF’ ds, G’ ds, oH’
dar oM G __om a o
dso__ax’ dso__ay’ dso_ 9z

2. ELASTIC LINE OF LORD KELVIN AND TAIT. — We may repeat for this line
what we did for the flexible inextensible line. Start with a function W of 50, & 1, &, p, q,

2" A. LEGOUX. — Equations canoniques, application a la recherché de 1’équilibre des fils flexible et des
courbes brachistrochrones, Mém. de I’Acad. des Sciences, inscriptions et belles lettres de Toulouse, 8"
Series, T. VIII, ond semester, pp. 159-184, 1885.

% R. MARCOLONGO. — Sull’ equilibrio di un filo flessible ed inestensibile, Rend. dell’ Accad. delle
scienze fisiche e matematiche (Sezione della SocietB reale di Napoli), 2™ Series, vol. II, pp- 363-368, 1888.
64 Likewise, consult APPELL, Sur I’équilibre d’un fil flexible et inextensible, Ann. de la Fac. Des Sc. de
Toulouse, (1), 1, pp. B;-Bs, 1887.
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r, and add the conditions:

E=& =1, n=1n=0, E=6=0.

We define the functionsF',G'.H',I',J".K";X,.Y,,Z,,L,,M,,N, by means of the
identity:
j:’(éw + 14,05 + 1,0 + 11,05)ds, =[F'0x+G'0y +---+ K'0K']y

- j:’(x(;(séc FYSY 4+ NLOK )ds,;

this amounts to replacing W with W, + w(&§—1) + o+ w3& in the preceding and
including the indicated formulas &= & =1, n= 70 =0, {= & = 0 in these equations.

As one sees, we come down to the theory of the deformable line that corresponds to
the function Wy of so, & n, &, p, q, r, and when one limits oneself to the study of
deformations that correspond to E= & =1, n=m=0, {= & = 0. If we put ourselves in
the case where W, is hidden then we suppose that one knows simply the function W(so,1,
0,0,0,p, g, r) that W and W, simultaneously reduce to for §= §=1, p=1m=0, = §H=
0, and we recover the theory developed by LORD KELVIN and TAIT.

Observe that if, to construct the preceding line, we account for W a priori in the three
conditions §=& =1, n=1n=0, = & = 0 by a change of auxiliary variables then we
are led to replace W by W(so, 1,0,0, p, q, r) + tu(§— 1) + tom + & in the calculations
that relate to the general deformable line, and we obtain formulas that further reduce to
the study of a deformable line when one is limited to imagining deformations that
correspond to the three conditions &= & =1, 7= 1y=0, {= & = 0. Upon supposing that
Ui, th, w are not known these formulas lead us once more to the theory of LORD
KELVIN and TAIT.

Suppose that by virtue of the formulas that determine the deformation, one has
expressed Xo, Yo, Zo, Lo, My, Ny as functions of so, x, v, z, A1, A2, A3 in such a way that

Xodx+ Yody+ZodZ+[,odﬂl +Modﬂz+./\/z)dﬂ3

is the total differential of a function U of s, x, y, z, A1, A2, 43, considered simply with
respect to x, y, z, Ai, A2, A3 . In addition, suppose that we are in the case of hidden W or
the case envisioned in the latter example. From the preceding, the equations in question,

in which Xy, Yo, Zo, Lo, Mo, No figure, are none other than the extremal equations of the
problem in the calculus of variations that consists of determining an extremal for the
integral:

j:"(w +U)ds,,

where W is a given function of s, p, g, r, upon supposing that the six unknown functions
X, y,2, A1, A2, A3 verify the three differential equations:
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§_1=07 77=O, é.:O

If we set y1=8-1,y»=n,y3=_ and apply the considerations developed by
JORDAN then we may reduce the system to canonical form. Upon putting F',G',H'in

place of the variables A, A2, A3 of JORDAN, the system expresses that one nullifies the

BO .
first variation of the integral j N F ds, upon setting:

F=W+U+Fyp,+Gn+H'c.
The equations:

oF - oF - oF - oF oF oF »
12 = 12 = 19 73 = 49 7 = 59 = 6 ?
S S S Sk P Tan T i
ds, ds, ds, ds, ds, ds,
Yy =0, Y =0, ;=0

_dy L _di S, _dh

° 1

. . . dx
permit us to express the nine variables x'=——,

y - ’ Z = s
ds, ds, ds, ds,

' dj'z ' dﬂ’% ' ' ' - .

A, =—=, A =—, F ,G ,H as functions of the twelve variables x, y, z, A1, A&, 43, p1,

ds, =~ ds,
D2, ..., Pe by means of the formulas:
x/ — a, yl = a/, Z/ — a//,
F/=0471+0(/pz+0(”p3, Gl=/5p1+/5lpz+/5”p3a Hl:}p1+}/b2+}//b3a

and by solving the formulas:

aW 12 aW 12 aW !

p4=8p 1+6q 1+aral

29) pe= W+ s o
ap dq d

Pe = op 3 oq 3 3 3

where we preserve the notations of sec. 10, for the moment.
Substituting these values into:

plxl + pzyl + ng, + p4j'|,+ psjz, + p6}“}, -F,

we obtain the function H of so, x, v, z, A1, A2, A3, p1, p2, ..., ps, Which is deduced from:
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! n aW aW aW
-W-U+ap +ap,+ap,+p +q +
~ dp dq  Iq

by the substitution of the values for p, g, r as functions of so, A1, A2, 43, p1, p2, ..., pe that
one deduces from equations (29).

To determine the twelve variables x, y, z, A1, A, A3, p1, p2, ..., ps, We have the
equations (which are canonical if 5o does not figure explicitly):

dx 9H dy 9H  dz oM  dA _OH  dA, _oH  di _oH

9 9 9 9

ds, ) ap, , ds, ) ap, , ds, Op; ds,  dp, ds,  9ps ds,  9pg
dp, _ OH dp, OH  dp, OH dp, OH dps M dp,  oH

ds, ax  ds, dy  ds, dz  ds, oA ds, a4, ds, FY N
by which one may conclude the application of the method of JACOBI to the line in
question.

One may also present the preceding exposition as we did for the general deformable
line as well as for the dynamics of a point in our first note.

3. DEFORMABLE LINE WHERE Mx' IS TANGENT TO M AT (M). As always,
start with a function W of 5o, & #, &, p, ¢, r, and add the conditions that n=1,=0, {= &
= 0. We define the functions F',G',H',I',J'".K',X,.Y,,Z,,L,,M,,N, by means of the
identity:

j:’(éw + 14,01 + 1,05)ds = [F'6x+G' 6y +---+ K'0K'y

- j:’(x(;(séc FY/8Y 4+ N.SK")ds,.

This amounts to replacing W with W), = W + w11 + w:&, in the preceding, and adding the
indicated conditions 17 = 70 = 0, = & = 0 to the formulas.

As one sees, we recover the theory of the deformable line that corresponds to the
function Wy of so, & n, &, p, q, r when we limit ourselves to studying the deformations
that correspond to n=1y=0, =& = 0. If we put ourselves in the case of hidden W,
then we suppose that one knows simply the function W(so, &, 0, 0, p, ¢, r) that W and W,
simultaneously reduce to for =1 =0, {= & =0.

If, to construct the preceding line, we account for the two conditions
n=n=0,&=& =0 in W a priori, by a change of the auxiliary variables, then we are
led to replace W with W(so, &, 0, 0, p, q, r) + tun + & in the calculations that relate to
the general deformable line, and we arrive at formulas that once again reduce to the study
of a deformable line when one is limited to studying deformations that correspond to the
two conditions 7= 1y, {= & .

Suppose that, by virtue of the formulas that determine the deformation, one has
expressed Xo, Yo, Zo, Lo, My, Ny as functions of so, x, y, z, 41, A2, A3, in such a way that:
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Xodx+ Yody+ZodZ+[,odﬂl +Modﬂz+./\/z)dﬂ3

is the total differential of a function U of so, x, y, z, A1, A2, A3, considered simply with
respect to x, y, z, A1, A2, A3. Suppose, in addition, that we are dealing with the case of
hidden W or in the case envisioned in the latter example. From the preceding, the
equations in question, in which Xy, Yo, Zo, Lo, Mo, Ny figure, are none other than the

extremal equations for the problem of the calculus of variations that consists of
determining an extremum for the integral:

j:"(w +U)ds,,

where W is a given function of so, & 7, &, p, g, r, upon supposing that the six unknown
functions x, y, z, A1, A2, A3 verify the two differential equations 7 =0, = 0. The earlier
considerations are thus repeated and it will be the same for all of the other particular lines
that we have envisioned.

29. States infinitely close to the natural state. Hooke’s modulus of deformation.
Critical values of the general moduli. Concurrence with the dynamics of triads. —
Return to the general deformable line. Suppose that the action is null in the natural state,
as well as the effort and the moment of deformation, and similarly, the external force and
moment. In this case, not only does the function W vanish identically, but also the six
partial derivatives of W with respect to & », &, p, g, r, for the values &, m, &, po, qo, ro of
these variables. Suppose, moreover, that W is developable in a neighborhood of £= &), 7
=1, &= &, p = po, q = qo, r = ro in positive integer powers of &— &, 7= 1o, ..., ¥ = 1o .
Under these conditions, one will have:

W= W2+W3+...

upon representing W,, Wi, ... by homogenous polynomials of degree 2, 3, ..., in the
differences &— &, - 1o, ..., ¥ — o .

Suppose that the coordinates of a point My of the line (My) in the normal state and the
three parameters by means of which one expresses the direction cosines of the axes of the
triad associated with that point are xo, Yo, 20, A0, 420, A30, respectively, and that the
coordinates x, y, z of the corresponding point M in the deformed state (M), and that the
parameters A;, 4>, A3 that define the axes of the associated triad are functions of sy and &
that are developable in powers of / by the formulas:

X=Xxp+x1+...+x;+ ..., ﬂl=ﬂlo+ﬂn+...+ﬂli+...,
y=yo+yi+...+yi+ ..., ﬂz=ﬂzo+ﬂzl+...+ﬂzi+...,
=0+t +...+Z+ ..., ﬂ3=ﬂ3o+ﬂ31+...+ﬂ3i+...,

in which x;, i, zi, A1, A2, A3; denote terms that refer to the h' factor. We introduce these
series developments to abbreviate the exposition and we assume that they obey the
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ordinary rules of calculus. The formulas of sec. 14 permit us to calculate the
developments of F, G, H, Z, 7, K; Xo, Yo, Zo, Lo, Mo, Ny in powers of h; the terms that

are independent of % are null, and the terms F, G, Hi, 71, J1, K1; Xoi, Yo1, Zoi, Lo1, Mo,

Ny are given by the formulas:

ow.
Fy = GX?D’ G, = ajv(zl)’ H, = dz(zl)’ 1,= (jiuj:z(l)’ jl:%,]q=%,
9 FRd (R 0= 1 0" 6=
ds, ds, ds, ds, ds, ds,
_d W, d W, _d_w,_
U ds, adx(l) T s, ady(l) ’ o ds, adz(l) ’
dso ds() dsO
Ko—i W, W, M@_i ow, W, _d oW, W,
R e L 7L VU
dSO ds() dsO
where we have set:
XV = xy +x,, YV =y + 0, W=z 41,
)“il) =Ao+ 4, )“(21) = Ay + 4y, )“gl) = Ay + Ay

If we consider, under the name of deformation state one that is infinitely close to the

natural state, then the state (M), where the point M has the coordinates X, y(l), ZY, and

where the parameters that relate to the associated triad have the values A", A%, A}, and
if, on the other hand, we call the vectors (Fy, Gy, Hy), (Z1, J1, K1), Xo1, Yo1, Zo1), (Lo1,

Mo, Noy) the effort, moment of deformation, external force, and external moment, relative
to that state, where Lo;, Mo1, No; are calculated by means of A0, A, 430, Lo1, Mo1, Noi,

in the same manner as Lo, My, Ny are calculated from A;, Ay, A3, Lo, Mo, No, then we

arrive at the general hypotheses made by the classical authors, and where the first two
vectors are linear functions of the elements that characterize the deformed state in
question. As a consequence, we recover what has been named the generalized HOOKE
law, but limited, as is convenient, by the condition that we respect the principle of energy
conservation. To satisfy this condition in the classical method it is necessary to retrace
the path that we followed in our exposition, but in the opposite sense.

The coefficients in the linear functions that express HOOKE’S law are the
deformation moduli of the deformable line in its state of being infinitely close to the
natural state; they are invariant at a given point of the line. This notion of modulus may
be generalized upon envisioning the first and second derivatives of the function W.
Instead of the case where the general moduli are defined and continuous, one may
consider the one where they have critical values.

The preceding considerations are easily repeated for different particular deformable
lines; they must be reconciled with the ones that we developed in our first note. Indeed,
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the dynamics of triads is attached to the foregoing in a completely direct manner. It
suffices to regard the arc sy as time t, and the deformable line as a trajectory. This simple
statement immediately explains the analogies that have been recognized for quite some
time between the classical dynamics of a point and the rigid body, and the statics of the
deformable line.

Observe that, as in the preceding proposition that we obtained (%) for the case of the
rigid body, with regard to the kinetic energy, there corresponds a proposition for the
deformable line, from which, when W does not depend on sy explicitly, formulas (10)
entail that the expression:

(EX( + Yy +Zy + pLy +gMg +rN;)ds,
which may be put into the form:
Xodx+ Yody +ZodZ+ ,Codﬂl + Modﬂz+ ./\/E)dﬂ@,

is equal to the differential of the quantity:

ow ow oW ow oW oW
& +n +c +p +q +r -W,

& on g ap dq ar

that was already introduced in sec. 14.

On the other hand, observe that one may add considerations that are analogous to the
ones that were developed in the present work, as far as constraints are concerned, for the
deformable line to the developments that were given in our first note with regard to the
rigid body.

% Note sur la dynamique du point et du corps invariable, Tome 1, pp. 261.



III. - STATICS OF THE DEFORMABLE SURFACE
AND DYNAMICS OF THE DEFORMABLE LINE

30. Deformable surface. Natural state and deformed state. — As we shall see, the
developments that we deduced in regard to the deformable line are reproduced, almost
unchanged, in the theories of the deformable surface and deformable three-dimensional
medium. This repetition shows the fecundity of the concept of Euclidian action. It
suggests numerous approaches and opens up a vast field of study that the first researchers
began to explore only with great difficulty, but which is now possible to begin more
successfully, given the present state of the general geometric theory of surfaces and
curvilinear coordinates, such as what DARBOUX has presented in his great works (').

Consider a surface (My) that is described by a point My, whose coordinates xo, yo, 2o
with respect to three rectangular axes Ox, Oy, Oz are functions of two parameters, which
we assume are chosen in a arbitrary manner and are designated by p; and o, . Adjoin a
trirectangular triad with axes M x,, My, ,Mz, to each point M, of the surface (Mo), whose

direction cosines with  respect to the axes Ox, Oy, 0Oz are
Ay, 05 BosBosBas VooVe»Ve-Tespectively, and are functions of the same parameters
o1 and o, . The continuous two-dimensional set of all such triads M x,y,z, will be what

we call a deformable surface.
Give a displacement MyM to the point My, and let x, y, z be the coordinates of the

point M with respect to the fixed axes Ox, Oy, Oz. In addition, give the triad M x,y, z; a
rotation that ultimately brings the axes of the triad into agreement with those of a triad

A

Mx'yz  that we adjoin to the point M; we define that rotation by giving the direction
cosinesa,a’,a"; B,B'.B"; v,y',y" of the axes Mx',My',Mz' with respect to the fixed axes.
The continuous two-dimensional set of all such triads Mx'y'z' will be called the deformed

state of the deformable surface under consideration, which, in its primitive state, will be
called the natural state.

31. Kinematical elements that relate to the state of the deformable surface. — Let
EP 1 ,c” denote the components of the velocity of the origin My of the axes
M x;,M,y,,Mz, along these axes when each p; alone varies and plays the role of time.
@ ¢, r'” be the quantities that define the projections on those axes of

the instantaneous rotation of the triad M x,y,z, relative to the parameter 0. We denote

Likewise, let p

the analogous quantities for the triad Mx'y'z'by &, n;, &, and p;, q:, r; when one refers it,
like the triad M x, v,z , to the fixed triad Oxyz.
The elements that we just introduced are calculated in the habitual fashion; one has:

" GASTON DARBOUX. — Lecons sur la théorie générale des surfaces, 4 vol., Paris, 1887-1896; Lecons
sur les systemes orthogonaux et les coordinées curvilignes, Tome 1, Paris, 1898.
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ox 0 , 02 J J
§i=a ta y"'a pi=z}’_ﬁ=_2ﬁ_}/
9P, 9p; 9p; 9p; 9p;
ox ' ay " 0z 8}/ Jo
30 = + + 31 =) a——=- —
GOy =p P, & P, & P, GL e -2 P, "op,
ox ,0 Y da 9
Ci=y 2y r=Y f—=- all
9P, 90; 9p; 9P, 90;

The linear elements dso and ds of the surface in its natural and deformed state will be
defined by the formulas:

ds; =&dp’ +2Fdpdp, +Gdp; ds*=Edp} +2Fdpdp,+Gdp; ,
where &, F, G are calculated from the following double formulas:

2 2 2
0x 0 0z
9P, 90, 90,

f=8x 8x+8y 8y+az 0z
00, 0p, 0P, 9P, 9P, 0P,

2 2 2
0x 0 0z
9P, 90, 90,

and where &, Fy, Gy are calculated by analogous formulas.

(32)

=&& +n1m, +6,5,,

Denote the projections of the segment OM onto the axes Mx',My',Mz' by x',y',z', in
such a way that the coordinates of the fixed point O will be —x',—y',—z" with respect to
these axes. We have the following well-known formulas:

!

0x P
&-——-qz +ry =0,
ap,

a i li
(33) n -~ '+ pz =0,
ap,

0z ' '
Si———-py+qx =0,
9P

i

which give the new expressions for &, #; , & .

32. Expressions for the variations of the translational and rotational velocities
relative to the deformed state. — Suppose that one gives an infinitely small
displacement to each of the triads of the deformed states in a manner that may vary in a
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continuous fashion with the triads. Designate the variations of x, y, z;
X,y 7 ad -y by ox, Oy, o, ox',0y',%'; da,0a,---Oy", respectively. The
variations da,da’,---.0y" are expressed by formulas such as the following:

(34) Sa = BSK' - yoJ'

by means of the three auxiliary functions 6I',8/',0K’,which are the components with
respect to Mx',My',Mz' of the well-known instantaneous rotation that is attached to the

infinitely small displacement in question. The variations dx, dy, oz are the projections on
Ox, Oy, Oz of the infinitely small displacement given to the point M; the projections
0'x,08"y,8'z of this displacement on Mx',My',Mz' are deduced immediately and have the

values:
O'x=0x"+70J" -y oK',
(35) O'y=0y +x'0K' -74I',
0'z=07'+y'6I'-x'6J".

We propose to the determine the variations o6& , on; , 0& , dpi , &q; , Or; that are
implied for &, :, & , pi , gi , i , respectively. From the formulas (31), we have:

épi Z(aﬁ }’_/j

9P, 9p;
&, = Z(a—yéa + aﬂ

)

)

9P, 9p;
00a
él”i = Z géﬁ ﬁy .

We replace da by its value SOK' —ydJ', and 6c',--- .Oy" by their analogous values; we
obtain:

(5pi—ﬂ+ OK' -roJ’,
90;
(36) s5p =20 s b oK,
90;
or, = 90K +p,0J' —qol'.

Likewise, formulas (35) give us three formulas, the first of which is:

Ok, —Zﬂw, "=y - y'or,

1
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if we replace dp; , dq; , or; by the values they are given from formulas (36) then we
obtain:

o0&, = niéK’—gid]’+?+ q,0x-r0Yy,

(37) on, =¢,0l' -£0K' +<?9(5_y +r0y-p,0%z,

1

¢,

1

= 5[‘5-]/‘77,"51/"'%"' p.0X—q.0Xx,
p.

1

where, to abbreviate the notation, we have introduced the three symbols d'x,8'y,d'z that
are defined by formulas (35).

33. Euclidian action for the deformation of a deformable surface. - Consider a
function W of two infinitely close positions of the triad Mx'y'z', i.e., a function of oy, 02,

x,y, z,a,a’,---y", and their first derivatives with respect 0 and p,. If we preserve the
notations of sec. 31, and set:

then we propose to determine what sort of form that W must have in order for the
integral:

jIWAodpldpz )

to have a null variation when taken over an arbitrary portion of the surface (My), and

when one subjects the set of all triads of the deformable surface in its deformed state to

the same arbitrary infinitesimal transformation of the group of Euclidian displacements.
By definition, this amounts to determining W in such a fashion that one has:

oWwW=0

when, on the one hand, the origin M of the triad Mx'y'z’ is subjected to an infinitely small
displacement whose projection dx, dy, &z on the axes Ox, Oy, Oz are:

ox =(a, + w,z2 - w,y)ot
(38) oy =(a, + w;x — w,7)0t
0z =(a; + W,y —w,x)ot,

where a1, az, as, mn, a», w; are six arbitrary constants and &t is an infinitely small quantity
that is independent of o1, 02, and when, on the other hand, this triad Mx'y'z'is subjected
to an infinitely small rotation whose components with respect to the axes Ox, Oy, Oz are:
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w0t, o, wiot.

Observe that in the present case the variations 0&, o, &, 1, o1, Or1; 05, On,
0%, P2, g2, Ory of the twelve expressions &, 1, &, p1, g1, 115 &, M, &2, P2, G2, 12 are
null, since this results from the well-known theory of the moving triad, and as we may,
moreover, immediately verify by means of formulas (36) and (37) by replacing
0x,0y,07; 61',6J',0K' with their present values. It results from this that we may
obtain a solution of the question when we let W be an arbitrary function of pi, 0, and the
twelve expressions &, m1, &, p1, q1, 115 &, 12, &, p2, g2, r2; we shall now show that we
also obtain the solution to the general problem (") that we now pose.

To that effect, observe that the relations (31) permit us — by means of well-known
formulas — to express the first derivatives of the nine cosines ,a’,---.y" with respect to
o1 and 0, by means of the cosines and p1, g1, r1; p2, g2, r2. On the other hand, we remark
that formulas (30) permit us to conceive that one expresses the nine cosines
a,a’,---y"by means of &, n;, &, and the first derivatives of x, y, z with respect o1, or by
means of &, 1, &, and the first derivatives of x, y, z with respect to 0. Furthermore, in
this case it is useless to make a hypothesis on the mode of solution, since it is clear that
we do not obtain a more general form than the one that we are led to upon ultimately
supposing that the function W that we seek is an arbitrary function of o1, 02, and of x, y, z,
and their first derivatives with respect to 01, 02, and finally, of &, ni, &, p1, q1, 115 &, 12,
&, P2, q2, 12, Which we indicate by writing:

ox Jdy dz Ox
W=W(p1ap2ax,yaza ’ ’ ’ a”',gl,771aglagza”'apl,qlarlapzan')'
0P, 9P, 0P, 9P,

Since the variations 0&, ..., dr;, 0§, ..., or; are null in the present case, as they are for
some instant, as we have remarked, we finally can write the new form of W that obtains
from formulas (38) and for any a,, a», as, @y, a, ws:

aW§x+aWéy+ (5Z+z ow ax ow 66)} ow éaz _o.
0x Y 0z aﬂ 90; aﬂ 9P, aﬂ 9p;
90, 9P, 9P,

If we replace ox, dy, & by their values in (38), and (5— o0— 9y (5— by the values
0o, 0o, 9P
that one deduces by differentiating, and set the coefficients of a;, az, as, an, a», as then
we obtain the following six conditions:

" In what follows, we suppose that the deformable surface is susceptible to all possible deformations, and
that, as a result, the deformed state may be taken absolutely arbitrarily; this is what mean when we say that
the surface is free.
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W W W

0,
0x ay 0z

9

2 oW az _ oW ay _0 z oW  ox _ oW az
W ap, g0 p | T TN % ap, 0% ap,
90, 9P, 90 9P,

1o

z oW ay _ oW  ox
90X op; 5 % ap,
90, 9P,

=0,
"l

which are identities if we assume that the expressions that figure in W have been reduced
to the smallest number.

The first three then show us, as one may easily foresee, that W is independent of x, y,
z. The last three express that W depends on the first derivatives of x, y, z only by the

intermediary of the quantities £, F, G that were defined by the formulas (32). We
therefore finally see that the desired function W has the remarkable form:

W(or, 02, &, mis & &, 10, &3 1L q1, 11 D2, @2, 12),

which is analogous to the one we encountered previously for the deformable line.
Let A denote the quantity that is analogous to Ay and is defined by the formula:

A=~EF-G* .

If we multiply W by the area element day = Ay dpidp» of the surface (My) then the
product W Ay dpidp» so obtained is an invariant that is analogous to the area element of
the surface (M) in the group of Euclidian displacements. The same is true for the value of
the integral:

[ ICOAAAodpldpz =[] Adpdp,
0

that is taken over the interior of a contour Cy of the surface (Mp) or a corresponding
contour C of the surface (M) that determines the area of the domain delimited by C on
(M). Similarly, in the spirit of the notion of action for the passage from the natural state
(M)) to the deformed state (M), we adjoin the function W to the elements of the definition
of the deformable surface, and we say that the integral:

.UCO WA, dp,dp, ,

is the action of deformation of the interior of the contour C of the deformed surface.
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On the other hand, we say that W is the density of the action of deformation at a point
of the deformed surface when referred to the unit of area for the non-deformed surface;

A
WXO will be that density at a point when referred to the unit of area of the deformed

surface.

34. External force and moment; the effort and moment of external deformation;
the effort and moment of deformation at a point of the deformed surface. — Consider
an arbitrary variation of the action of deformation of the interior of a contour C of the
surface (M), namely:

]| JCOWAOdpldpz = jjc Z[Zg’ OF + Z‘: o1, + ” o5, +

aw

o+ s+ W s,
: : r

1 1

By virtue of formulas (36) and (37) of sec. 32, we may write:

éjICOWAOdplde = -”Co Z{z_g(ﬂifﬂ(l -c, ' +% +q,02- riélyj

1

+ﬂ giél'—g-'l.éK'+—a§y+1;6'x—p,6'z
a7, 9p;
W §J'I'—77i61'+&+pié'y—x§'z
Jg; 9p;
+ﬂ ﬂ+qi6K'—r,.§J' ++ﬂ ﬂ+r,.§l'—p,.§K'
ap; \ 9p; g, i
K/ ! !
w 90 +p,0J " —q;0l" | |A,dp,dp,.
ar; \ 9p;

If we apply GREEN’S formula to the terms that refer explicitly to the derivatives with
respect to p; or o, then we obtain:

5[] WA dpidp, = [ (aw o+ W st W s W s, W gy W
Co o ‘951 an, Js, op, 0q, ar,
_(awé, P\ oW P\ oW P\ ﬂAodPI

05, an, 9¢, ap, dq, or,
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i 0 apt 677, ’agt a i
I LI LU O L 4
i _AO apl ‘ agt la i QI agt
+zi 0 Aan +qi8W_ri8W+ i@W_S_IGW 57’
I _A() ap, apl ar[ aqt agl a’?l
+ZL 0 Aan +n8W_pi6W+gi8W_§l<9W e
; _Ao 9P, dq; ap; or, &, a¢;
e LA, B D g Y, Sk A dpidp,.
i _Ao api ari aqi api ani agt’

The curvilinear integral that figures in the preceding formula must be clarified by
specifying the sense of its traversal; as one knows, this sense is defined by means of the
rotation that is given to the positive part of the curve (), i.e., the part that corresponds to
the sense in which p; varies on that augmented curve at the edge of the positive part of
the curve (). One may further specify that curvilinear integral, as in the example of
BELTRAMI upon giving it the form that is provided by applying the formulas:

X% 00 o | @
Ldpdp, = | &+ F, ds,
I 22 apar. - | &2 oanojAo

g 00 @
[ 2 apan, = [ 7326, | Las,

where @ denotes a function of o1, 0», where dsy is the absolute value of the linear element
of the curve (Cy), and where ny indicates the direction of the normal to the contour (Cp)
traced in the tangent plane to the surface (My) and directed towards the exterior of the
region delimited by that contour. To obtain the new form of the curvilinear integral, it
will suffice to replace the dp; and dp, found under the integral sign in the first form that
we obtained with the following values:

_[ 9K go jdso , {50%_'_}5%}%,
* an, on, ) A, on, on, ) A,
respectively.

If we let ﬂé ,u(;,v(; denote the direction cosines of the exterior normal to the contour

Cy in question with respect to the triad M ,x;y,z, then one may give the following forms
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to the preceding two expressions that must be substituted for dp;, and djo,, respectively('):

! ! ! ds ! ! ! ds
B9 ~E + g e R Vi

0 0

by virtue of the formulas:

© 9P,

) , 00 00
, , =7 0 90, © 901 | _©0 9P
on,

+17, 5 Vo =64 +S, 5

=0 g ; TR
n, n, n,

on, on,

that determine A, , .V, .

If dso denotes the absolute value of the element of arc for the contour C, traced on the
surface (Mp) then set:

oW dp, W dp,

oW dp, W dp,

0= o > (/) =A, >
(agl ds, d&, dsOJ (6771 ds, 0n, dsOJ
b - AO(aw dp, oW dpl}

95, ds, 9, ds,
I'ZA oW dp, W dp, 7 A oW dp, W dp,
’ ’ op, ds, dp, ds, ) ’ ’ dgq, ds, dq, ds, )

!

K - AO(aw do, W dpl}

or, ds, Or, ds,

where the signs of dp; and dp, are made precise by the sense of traversal indicated above
for the curvilinear integral, or again, the values of dp; and dp, are the ones that one
indicates and in which the exterior normal to the contour Cy that is situated in the tangent
plane to (My) figure. In addition, if we set:

19 W oW oW ,
z - A, +4q; - =X,
TLA 9o 9 dg;  om
Zia Aan +riaW_piaW ¥,
T LA 9o\ 0, &, 9¢;

1 W oW aw | _,
z -~ A, + p; -4, =Z,,
| A 90 g, an, &,

' One naturally has analogous formulas upon introducing the direction cosines A',u’,v' of the exterior

normal to the contour C that corresponds to C, with respect to the triad Mx'y'z'".
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19 oW W oW aw oW |
z_ A0 +4; it +7); -G =L,
i _AO apt apl ari agt a i a i

- | |
z_ 0 AOGW +riaW_pi6W+§i8W_§i8W M.,
; _Ao 9P, dq, ap; ar,; &, a¢;

19 oW oW oW _ W oW ,
z_ A0 + p; -9, +§i -7, =N,
i _Ao 90 or,; aq, ap, a7 &,

then we have:

S| jco WA, dp,dp, = jco (F)8%+G.8Yy + H.0% + 1,81 +J .01 + K.OK")ds,

- ”C (X[ 0x+Y, 0y +Z 0%+ Lol'+ M 8]' + N,OKA dp,dp, .

If we first consider the double integral that figures in the expression for
o .[ J.C WA,dpdp, then we call the segments that have their origins at M whose

components along the axes Mx',My' .Mz’ are X,Y,,Z, and L),M,,N,, respectively,
the external force and external moment at the point M referred to the unit of area of the

non-deformed surface. If we next consider the curvilinear integral that figures in
o .[ J.C WA,dpdp, then we call the segments that issue from the point M, whose

projections on the axes Mx',My' .Mz are -F,,-G,,-H, and -1,-J,~-K,,
respectively, the external effort and external moment of deformation of the contour C of
the deformed surface at the point M referred to the unit of length of the contour Cy.

As we have seen, at a specific point M of C these last six quantities depend only on
the direction of the exterior normal to the curve Co, taken at the point M, in the tangent
plane to (My). They remain invariant when the direction of the exterior normal does not
change when one varies the region (M)) in question, and they change sign if that direction
is replace by the opposite direction.

Suppose that one traces a line ¥ in the interior of the deformed surface that is
bounded by the contour C in such a way that it circumscribes a subset (A) of the surface,
either alone or with a portion of the contour C, and denote the rest of the surface outside
of the subset (A) by (B). Let Xy be the curve of (My) that corresponds to the curve X of
(M), and let (Ap) and (By) be the regions of (My) that correspond to (A) and (B) of (M).
Imagine that the subsets (A) and (B) are separate. One may regard the two segments
(-F,,-G,,-H,) and (-1;,-J;,-K}) that are determined by the point M, the direction of
the normal to X in the tangent plane to (M), and the exterior to (Ao) as the external effort
and the moment of deformation at the point M of the contour X of the region (A).
Similarly, one may regard the two segments (F,,G,,H)and (I,,J,,K,) as the external
effort and moment of deformation at the point M of the contour X of the region (B). By
reason of this remark, we say that -F,,-G,,—H, and -1;,-J,,—K| are the components
of the effort and moment of deformation that are exercised at M by the portion (A) of the
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surface (M) with respect to the axes Mx',My',Mz', and that F,,G,.H,, I,,J;,K; are the
components of the effort and moment of deformation that is exercised at M on the portion

(B) of the surface (M).
The observation made at the close of sec. 9 on the subject of replacing the triad
Mx'y'z7" with a triad that is invariably related to it may be repeated here without

modification.

35. Diverse specifications for the effort and moment of deformation. — Set:

a-a, W gAY s
a&, an, a¢;
proa W o -n W LA
api agt ar

1

Y N L, 1 1 —
A, B, C, and B, o, R, represent the projections on

Mx',My',Mz', respectively, of the effort and moment of deformation that is exerted at

so that

the point M of the a curve that admits the same tangent as p; = const. This effort and
moment of deformation are referred to the unit of length of the non-deformed contour As
for 0 = const the effort and moment of deformation have the projections

, C, and , 0., , respectively.
FENEC E

The new efforts and the new moments of deformation that we shall define are related
to the elements that we introduced in the preceding section by way of the following
relations:

0A
Z —+q,Ci-1,B; |=AX,, Fé:A;dL_A dp,
—\ 00, ds, dso
0B/
Z —L+1rA - p.C/ |=AY,, G6=B{dL—B dp,
—\ 00, ds, dso
oC.
Z _+ptBt CIiAiI =AOZ(I)’ H(/)=C1/dp2_C£%a
T\ 9P, s, ds,
)
Z _+q’ i I"Q +77!Ct .giBiI =AOL(I)’ I(/) =Plldp2 _leﬂa
i apl S() dSO
a , 12 ! ! ! 12 ’ /d /d
Z g-l-ripi_piRi-l-niAi_giCi =AM,, Jo =0, pz_Qzﬂ,
—\ 00, ds, ds,
aR, ! ! ! 12 ' ’ /d d
Z a_l+piQi_CIi[)i+§iBi_77iAiJ=AONO, K0=R1L_R P
i \ 9P

ds, ds,

i
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where, if one prefers, dpo; and dp, are replaced by their values (39) in the equations on the
right.

One may propose to transform the relations that we just wrote independently of the
values of the quantities that figure in them that were calculated by means of W. Indeed,
these relations apply to the segments that are attached to the point M, and that we gave
names to. Instead of defining these segments by their projections on Mx',My',Mz', we
may just as well define them by their projections on the other axes; the latter projections
will be coupled by relations that are transforms of the preceding.

Moreover, the transformed relations are obtained immediately if one remarks that the
primitive formulas have simple and immediate interpretations (') by the adjunction of
axes that are assumed parallel to the ones at the point O to the moving axes.

1. First consider the fixed axes Ox, Oy, Oz. Denote the projections on these axes of
the external force and external moment at an arbitrary point M of the deformed medium
by Xo, Yo, Zo and Lo, My, Ny, respectively. The projections of the effort and the moment
of deformation that are related to the direction (dpi, dp») of the tangent to a curve C are
designated by Fy, Go, Hy and Iy, Jo, Ko, respectively. They are referred to the unit of
length of the non-deformed curve Cy, and have been previously defined. The projections
of the effort (A/,B/,C}), and the moment of deformation (P/,Q/,R/),are denoted by A;,

Bi, Ci, and P;, Q;, R;, respectively. The transforms of the preceding relations are
obviously:

94 04 _ax,, F,—A P2 _p 900
00, 0P, ds, ds,
9B, 9By G, -p %P_p W
00, 00, ds, ds,
9C 9C ) x,, H, -c, P> _¢c 9P
0, 0P, ds, ds,
B 8 0 Do, W g 9i g9 _Ap, q -p%Pr_pt
00, 00, 90, 90, 90, 90, ds, ds,

d
an+aQ2+Al aZ"'Az %= -C, o -C, o =A0Mo’ J0=Q1dp2_Q2 /01,
00, 9P, 90, 90, 90, 90, ds, ds,
R R g 0 g % f D g D AN, Kk -rWP_pg
0P, 00, 90, 90, 90, 90, ds, ds,
o, and ap, must be replaced by:
ds, ds,

" An interesting interpretation of note is the analogue of the one that was given by VARIGNON in the
context of statics and by P. SAINT_GUILHEM in the context of dynamics.
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0 0 1 0 d
_L(ﬂo Xo - Yo +v, <o J, __()“0 %o u Yo +v, Zo}
A, 90, 2 00, A, 9P, 1 90,
d d
respectively, whereas e and s must be replaced by:
ds ds
1
_l(ﬂ 0x ‘o dy oy az} ——(ﬂ ax+ﬂ6y oy az}
AL dp, ~ dp, 0P, AL dp,  opy 9p

respectively, where we have notated the direction cosines of the exterior normal to Cy

with respect to the fixed axes by Ay, uo, W, and the exterior normal to C by A, w, v.
In particular, these equations give the equations of the infinitely small deformation of

a plane surface that were used by LORD KELVIN and TAIT ().

2. One may give a new form to the equations relating to the fixed axes Ox, Oy, Oz.
We may express the nine cosines «,c',---,y" by means of three auxiliary variables;

let A1, A2, A3 be three such functions. Set:

D oydf == pdy =w\d +wydh, + widA,,
Dady ==Y yda = xidA + xsdh, + xidAs,
D Pda ==Y adff = 0ydA +0ydA, +04dA;.

The functions @/, x,,0] of A1, A, A3 that are so defined satisfy the relations:

9w, 3w, ‘o' - xy'ol =0
A, 94, XiZj = X% =5
ax'. oy
a);j —a—i(’+0,.'w; —ow =0, (,j=1,2,3),
i J
ao_; ao-,/ ZD_/ ! ZD_/ /_O
A, 94, Xy A=
and one has:
, 04, , 04, , 04,
P =0 AT, T,
9P, 9P, 90,
_ 0 0k
q; Xlai Xzapi Xzal,
, 04, , 04, , 04,
r, =0, +0, + 0,
9p; 9P, 90,

! Treatise on Natural Philosophy, vol. 1, Part I1, sec. 644, pp. 186-188.
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Let @;, )i, G; denote the projections on Ox, Oy, Oz of the segment whose projections
on the axes Mx',My',Mz' are @w/,y,,0,. We have:

Za'da" = —Za"da' =w,dA, +w,dA, + w,dA,,
Za"da = —Zada" = x,dA, + x,dA, + x,dA,,
D ada' ==Y ada =o0,dA +0,dA, + 0,dA,,

by virtue of which (1) the new functions @, x;, o; of 41, A, A3 satisfy the relations:

awj awi

o5, an, AT X0 =0
i J

ax. oy

a);j —a—i‘wa,.wj—ajw,. —0,  (,j=1,2,3),
i J

9o, do,

oA an T T =0

J

Again we make the remark, which will serve us later on, that if one denotes the
variations of Aj, A, A3 by JAi, I, dA3, which corresponds to the variations
oa,oa -+, 0y" of a,a',--+,y" then one will have:

o' =w 0\ +w,0A, +w;0A,,

A" = 2100, + 3,00, + X304,

OK' =0,0A, +0,0A, + 0,04,

Ol =adl' + A"+ yoK' =@ A, + @, 0A, + w,0A,,

o =a'0l' + 0]+ y oK' = x,0A, + x,0A, + y;0A,,
0K =a"0l' + B"0]"+y'0K' = 0,0A, + 0,0A, + 0,04,

where d, &/, oK are the projections onto the fixed axes of the segment whose projections
onto Mx',My' ,Mz' are 8I',6J',0K’.
Now set:
1,= zD'lll(lj +X1/J(; + UllK(; =wl,+xJ,+0K,,

! ! ! ! ! !

jo = ZD’210 +X2J0 +02K0 =ZD’210 +X2J0 +02K0 >
!y’ ! ! ! !

Ko =@l + x5 J )+ 05Ky = w31, + 3, ], + 04K,

" These formulas may serve to directly define the functions @;, ¥;, o7, and may be substituted for
w, =aw +fx +yo!
X, =aw +fx +yo (,j=1,2,3)

n_r " __r

o =a'w + % +y'o.
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[0 =w1/L(; +X1/M(; +O'1/N(; =w1Lo +X1M0 +01N0
/\/{0 =w£L(; +X£M(; +O'£N(; =w2L0 +X2M0 +0N0’
N, =@ + ;M + 0N, =w,L, + ;M , +O;,N, .

In addition, introduce the following notation:
I, = wllPi/"' XllQi/ + O-llRi/ =\ b+ 0 +OR,,
X, =@, P+ 3,0, + O,R =@,P, + ,0, + O,R,,

! ! ! ! ! !
2 =w, P+ 0,0 +O0R =w,F + 3,0, +O,R,..

we then have the following in place of the latter system in which either P/,Q/,R/or P;, Q;,
R; figure:

L, = Z {— = Ao, - 245) - Bi(@is, - 0.§) - Ci(x& - 9,0))

a ' ! ! a !
_Pz( “ 1Y _ri)(lJ_Qi( Xl +rw1 pialJ
9P, 9p;
! ao-/ ! !
_R{ 1 X1 _inlj:|’
9,

with two analogous equations. If one remarks that the functions &, 7, &, pi, qi, ri of

A 94, O

Ay oy Ay, S0 0%
oo, op, ap;
a§. , , ap, aw; , ,
_l+ .. —O. '=0, _l=_+ ia'_ri .
o, A o, " ap, T
ad 9g.  Ox"
Sy olg ~wg, =0, 0 L - po),
04, A, op,
¢, ) ) ar, 90| / /
_l+w' i i '=0, _l=_+ i i ,’w',
9, =X A, ap, PiX; =4,

that result from the definition of the functions @/, x/,0/ and the nine identities that they
verify, then one may give the preceding system the new form:

0E  om ., 9c  p, o, 0q, o
L, = Z__A & _ nl_c_g_pl_Ql_q R

1

on, Naon an T a0 R )

with two analogous equations.

87
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3. Instead of referring the elements that relate to the point M to the fixed axes Ox,
Oy, Oz imagine that we define these elements in terms of a trirectangular triad Mx,y,z,

that is moving with M such that the axis Mz, is normal to the surface (M) at M. To define
this triad Mx,y,z,, we refer it to the triad Mx'y'z’, and let ,/’,l" be the direction cosines
of Mx,, with m,m',m", those of My, and n,n',n", those of Mz, ,with respect to the

latter axes.
More precisely, we define the direction cosines n,n’,n" by the formulas:

1 ! 1 ”n 1
n=Z(771§2_772§1)’ n =X(§1§2_§2§1)’ n =X(§1772_§2771)~

1o

We assume that the triad Mx,y,z; has the same disposition as the others and, for the
moment, we make no other particular hypotheses on the other cosines.
Therefore, let £V,7",¢c" denote the components of the velocity of the origin M of

the axes Mx/,My,,Mz, with respect to these axes when 0; alone varies and plays the role

O I’.(l)

of time. Likewise, let p”,q",r" be the projections of instantaneous rotation of the

triad Mx|y, z, relative to the parameter p; on these same axes. In these latter definitions,

the triad Mx/yz, is naturally referred to the fixed triad Oxyz. We have:

©)

EV =IE +1'n, +1's,, 7, .

! n ! n
=m& +mn +mg,, g =n& +nmn +ng, =0,

and three formulas such as the following:

P =lp, + g 40+ Yt

op;

in which the triads being considered have the same disposition.
Let X,.Y,Z, and L;,M,,N, be the projections on the Mx,, My, ,Mz, of the external

0°70°
force and external moment, respectively, at an arbitrary point M of the deformed surface,
referred to the unit of surface of the non-deformed surface. Furthermore, let F;,G,,H,
and I),J;,K; be the projections of the effort (Fy, Go, Hy) and the moment (o, Jo, Ko),
respectively, on the same axes, and let A”,B/,C; and P’,Q,R/be the projections of the
effort (A',B/,C/) and the moment (P,Q;,R)),respectively, as previously defined.
The transforms of the preceding relations (or the primitive relations) are obviously

")

"It suffices to replaceé&, -, Ai/, .-+ with §i“) TR Ai”, --- and take the hypothesis 5';1) =0 into account; for an

arbitrary triad with vertex M one will have the same calculations.
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A'” ”n ”n d ”n d
z L-I-Qi(l)ci”_ri(l)Bi” = AOX(I)/a Fy= Alﬁ_Az £ )
~\ dp, ds, ds,
B/ P~ nd
z L + ri(l) Ai” - pi(l)Ci” = AOYOI/’ GO = Bl pz - BZ ﬂ ’
~\ dp, ds, ds,
aC” ” ” " ” ” d, ” d
z _l+pi(l)Bi_Qi(l)Ai =AyZy, H, =C1&_C2 o )
—\ 00, ds, ds,
(40) '
aPI/ ”n ”n n ”n ”n //d ” d
z -+ qi(l)Ri - ri(l)Qi + nlgl)cij B AOLO ’ IO = Pl dfz - P2 dfl ,
i i 0 0
a '” ”n ” ” ” ”n Ild ”n d
3 _a% eV P~ R 4 gf“c,.j A M. sy - or - or
i i 0 0
aR 'Il ”n ”n ”n ”n n ”n ”n d ”n d
z : +pi(l)Qi _q,'(l)Pi +§i(l)Bi _ni(l)Aij=A0N0a Ky =R, e - R, ad .
~| dp, ds, ds,

Instead of replacing dpi, dp», in the right-hand equations with their values in (39) or
their analogues relative to (M), we may give them the following values:

" " dS ” ” dS
SO e e

in which we have denoted the direction cosines of the exterior normal to the contour C
with respect to the triad Mx,y,z; by (A", u"0). We thus obtain:

W) A =) g7 W) A o) 47
»dsg _iu‘:&l A'+&7A +,Ll”’71 Al+my A

F, =
(41) ds oA oo A
prdsy S EVRREP Py P,
0 = U
ds A A

and two systems of analogous formulas.

These formulas lead us to substitute twelve new auxiliary functions for the twelve
auxiliary functions A',B/,C;,P/,Q/,R/,which will be the coefficients of A" and u" in the
preceding expressions for the efforts and moments, when referred to the unit of length of
C, or they will be related to these coefficients in a simple manner. We set:

(1) 4 (1) 4 (1) 4 (1) 41
& A1+2A2= Ui A1+772A2=

Ny, T-5;,
A A )
SUBEUBL oo aBenfBL
A ) A
I+ ECY n"Clen’Cy
- 29 - 19

A A
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in which we have introduced the first six auxiliary functions N;, N, T, Si, S2, S3, and
similarly:

) pry g0 pr Y P P! s
A 1° A 39
e o el
A ; A
SRLEE_ aReR
A A

in which we have introduced the other six auxiliary functions Ny, N>, 7, 81, S, Ss .
The twelve equations that we write may be solved immediately with respect to the

n

primitive auxiliary variables A, B/,C/,P",Q/,R. Observe that by virtue of the hypotheses
made on the common disposition of all of the triads, one has:

l l/ ll/

! ”n

m m m|=1
! n

n n n

as a consequence, the formulas that define £",1" give:

M, () _ =M, () _ A
1 'h 1 h :
As a result, we obtain:
Al=Nn® - (T -S)E", A =T =S)E" -Nm",
B/=(T+5)n" - N,&", B) = N&" ~(T +5)n".
C1H= 5277(1) _Slgz(l)a C; = Slgl(l) _Sznl(l)’

"

and six analogous formulas for P"Q’,R’, with the letters in italics on the right-hand side.
g 1 1 1 g

When we substitute these values in relations (40) and (41), we will have the equations
that relate to the efforts and moments of deformation, as well as the forces and external
moments, in the form that they take with the new auxiliary variables (').

Obviously, one may give names to the components of effort and the moment of
deformation that are analogous to the ones that we used for the deformable line.
Therefore, one may call the components N;, N, of the effort, the effort of tension. The
components 7' — Sz, T + S5 are the truncated efforts in the plane tangent to the deformed
surface. The components S, S, are the fruncated efforts normal to the deformed surface.

Similarly, the components N, N of the moment of deformation may be regarded as the

' We remark that the coefficient of S in the third equation is null.
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moments of torsion; the components 7 — Sz, 7+ S; have the character of the moments of

flexion, the components S;, S; may be called the moments of geodesic flexion.

36. Remarks concerning the components S, S, Sz and S, Sz, S3. — With regard to

the expressions S1, Sz, S3, and their analogues 1, S, &3, we clarify the following remark

that we used above in order to write the transformed equations.
In a general fashion, suppose we have a segment whose projections on Ox, Oy, Oz
are:

ayc_ﬁg ﬁA _ﬂc ﬂB _QA”

apl apl apl l apl apl apl l
If we think of this segment as the moment of a vector (A;, B;, C;) that is applied to the

point ox 9y % then one sees that the projections on Mx',My',Mz', will be:
ap, ap, ap,

77,'C,'/_§,'B,'/a giAi/_giCi/’ ngl 771 i
and on Mx,,My,,Mz, they will be:
77!'(1)6‘[”’ - gi(l)ci”’ gi(l)Bt'” - 77!'(1) Ai”'

From this, it results that the segment whose projections on Ox, Oy, Oz are:

Z(ﬂci_ﬁ&} Z(ﬁAi_ﬂci} Z(ﬁ&_ﬂ&j

apl apl
will have:
Z(’%C; _giBi’)’ Z(giAi’ - ‘.‘::ici’)’ Z(‘;Bi’ _77[141")

for its projections on Mx',My',Mz' and:

ZWC" AS,, =D ENCI=-AS,, 2. (& B/-n" A) = 2AS,

for its projections on Mx,, My, ,Mz, .
Naturally, there is an identical proposition for the italicized variables.
From this, one deduces that the conditions:

S1=0, S =0, S3=0



92 THEORY OF DEFORMABLE BODIES

amount to the following:

Z(’?ici’ —ngl’) = O’ Z(giAi’ _gici’) = Oa Z(ng,’ - 77,'A,") = O,

and that the conditions:

come down to:
Z(’?,R,’ _giQ,”) =0, Z(gipi’_giR,") =0, Z(giQ,” - UiR’) =0.

In these two cases, one arrives at a system of two equations that do not depend on the

o

choice of triad Mx,y,z,.

If the conditions S; =0, S, = 0, S5 = 0 are conditions that result from the form of W
then W verifies the three partial differential equations:

14 ow ow 14 ow ow
— — =O, = - l_ =O, l - l =O,
Z(ﬂ s J Z(a oz 5 agJ Z(s& Py agj

i i a¢; i a7, i i i
which entails that W depends on &, #;, & only by the intermediary of the expressions:
g=§12+7712+§12’ ‘7:=§1§2+771772+§1§2’ g=§22+7722+§22'

If the conditions &) =0, S; =0, S; = 0 are conditions that result from the form of VW

then }V verifies the three partial differential equations:
ow ow ow ow ow ow
=S —|=0, T —Sa—— =0, i —1,——|=0,
2(77, or, o aq,} Z(g op, o8 or, J 2(5 aq, 7 ap}

which entails that V¥V depends on p;, ¢i, r; only by the intermediary of the three
expressions:

pi&+qm+nd, pi&+qmp+notpp&+@n+nd, P&+ @ip+nb,

expressions that reduce to the coefficients of dp,,dp,dp,, and dp; in the equation of

the lines of curvature of (M) when & = & =0.
Furthermore, observe that if one simply imposes the conditions:

Sl=0, 52:0’
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which amount to saying that the segment whose projection on Mx,My ,Mz, has the
indicated values from the preceding page is parallel to Mz, or that it is perpendicular to
both of the vectors (&, m1, &) and (&, 1, &), which gives the conditions:

51(772C£ _ngé) + 771(§2A£ —§2C£) +§1(§2B£ _772A£) =0,
52(771C1/ _5'131/)"'772(5‘1‘41/ _§1C1/) +§2(§1Bll _771A1/) = 0,

which may be written:

s, —sm)A, +(6,& -5¢6,)B, +(&En, -n,&,)C, =0,
s, —sm)A + (&, -§6,)B +(En, -n,E,)C,| =0,

and, in that form express that the vectors (A/,B,,C|) and (A,,B,,C,) are perpendicular
to the normal Mz;. One thus finds two conditions that are independent of the choice of

triad Mx|y z;, and may be verified immediately a posteriori when one gives them the

meaning of the truncated efforts S;, S,. If the conditions S; =0, S, = 0 are conditions that
result from the form of W then W verifies the two partial differential equations:

ow ow ow
s, —sm)——+& -&§&6,)—+(&En, -n,&,)—=0,

05, an, 9,

ow ow ow
s, —sm)—+(6&5 -&§6,)—+En, -né&,)— =0,

0%, an, ¢,

which entails that W is a function that depends on &, #;, & only by the intermediary of
the three expressions &, F, G.
The same reasoning proves that the conditions:

81:0, 82:03

amount to two conditions that are independent of the choice of triad Mx; y, z, , which one
may ultimately write:

s, —sm)P +(,& -£5,)0/ +(&En, -n&)R, =0,
s, —sm)P, +(6.& -£6,)0; +(&En, -n.&,)R, =0.

If the conditions &) = 0, S; = 0 are conditions that result from the form of W then W
verifies the two partial differential equations:
w_

ow ow
s, —sm)—+(6& -&§6,)— +(&En, -n,E) =0,
ap, dq, i,



94 THEORY OF DEFORMABLE BODIES

ow AW EN1%
(s, _51772)a_+ (15 _§1gz)a_+ (&, _77152)67 =0,

P> 9, 2

which entails that W is a function that depends only on p;, g;, r; only by the intermediary
of the four expressions:

pi&i+qm+nd, p&+qamp+né,  ph+aem+né, phE+@ep+né.

Similarly, imagine the condition:
S3=0.

It expresses that the segment whose projections on Mx;,My,,Mz, have the indicated

values from the page (?) is perpendicular to Mz, ,which gives the condition:

(771§2 =&, )z (77,'Ci’ _g,’B,") +(§1§2 - glgz)Z(giAi’ - ‘:Eici’)

+ (‘51772 - 771‘.52 )Z (‘EiBi’ - niAi’) =0,

which does not depend on the choice of triad Mx,y,z, and leads to a partial differential

equation that is verified by W when the condition S3 = O results from the form of W.
This equation is:

ow ow ow
(525—517:)¥+(7725—771}-)a—+(§25—§1}-)a—

1 n S

ow
HEF - 59)% YL F —n@?—w e F -5G) 5 =0,

2 1, S

which is easily integrated because it admits the three particular integrals defined by &, F,

g, respectively.
The same reasoning applies to the condition:

$3=0,
which, moreover, corresponds to a condition that is independent of the choice of the triad

Mxy,z, and, when it results from the form of W, leads to the partial differential equation:

oW oW oW
EE-EF)—+,E - F)—+(,E - F)—
ap, dq, on,

ow ow
+<§2f—§g>g—w+(nzf—nlg>a—+<g2f—glg>a— ~0,

/%) q9, r

whose integration is immediate.
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37. Equations that are obtained by introducing the coordinates x, y as
independent variables in place of p,, 0, as in Poisson’s example. — We propose to
form equations that are analogous to those of sec. 35, but in which the independent
variables are x, y by pursuing a certain analogy that we will also make for the deformable
three-dimensional medium.

To abbreviate notation, denote the left-hand side of the transformation relations by

X020, Ly My N s e, set:

XO’=% 94 -AX,, 3{;=aB ﬂ—AOYO, ZO'=6—C‘ o, 2-AZ,,
90, 9P, 0P, 9P, 0o, 9P,
[(;=6P 0P, Clay+C ay_Blaz_ d “AL

00, 9P, | 90, 9P, 9P,
, 00 aQ 0z ox ox

M, = l  + A‘ +A, -G -G -AM,,
6/01 90, 90, 90, 90, 90,

/\/{(;=6Rl aR2+Blax+Bz ax_Aay_Alay_AONO‘
00, 9P, 90, 90, 9P, 9P,

We may summarize the twelve relations of sec. 35, in which we referred the elements
to fixed axes, by the following:

0= [[(Xoh +02 + 20 + Lo + Ty, + Ko )d pid o,
dp dp dp dop
+.[{FO—AIK2+A2 IJ/L{GO—BIX2+BZ LA,

0 So 0 So
+ Ho_clﬂ"'czdp1 Ay + IO_R%"'Pzdpl U,
ds, ds, ds, ds,

do dop
K, -R —2+R, L ds,,
( Ql ds, deoj ( 0 1ds0 2ds0jﬂ3} 0

in which A;, A2, A3, w1, o, w3 are arbitrary functions, and the integrals are taken along the
curve Cy of the surface (M) and over the domain bounded by them.
Applying GREEN’S formula, the relation becomes the following one:

- J’J.(XOAI oAy + ZoAy + Lypy + Moy + Noy)Aydpydp,
+ j(FOA’I +GoA, + HoAs + Lo p, + J ity + Koty )ds,

A A A A oA
_.[J'(,cxla‘+A2(M1+Bla2+Bzaz+C1 > 4C, 3Jdpldp2

op, ap, op op,  op op,
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p, P, o, o, TP,

ay ay 0z 0z
+ .U(apl C + ap, ¢ - ap, B, - ap, BzJﬂldpldpz

0z 0z ox ox
+ A + A - C, - C do,d
.U(apl o ap ' ap, 2}/12 £,40,

ou ou ou ou ou ou
_.“-(Pl ~+ P, 1"‘Qla 2+Q26—2+R1—3+R2—3 dp,dp,

dx 0x dy dy
+ B, + B, - A - A dp,dp, =0.
.U( o oo, ap M ap, 2}/13 £,40,

We seek to transform this latter equation when one takes the functions x, y of o1, o
for new variables. If one denotes an arbitrary function of o, 0», which becomes a
function of x, y, by j then the elementary formulas for the change of variables are:

dp _9p ox 9@ Iy
0p,  0x dp,  dy dp ,
g _dp x  op iy

0p, 0x dp, dy dp,

Apply these formulas to the functions A, A2, A3, w1, th, u3. Furthermore, if C always
denotes the curve of (M) that corresponds to the curve (Cp) of (M) then we denote the
projections of the force and external moment that is applied to the point M onto Ox, Oy,
Ozby X,Y,Z, L, M, N when referred to the unit of area for the deformed surface (M), and
the projections of the effort and the moment of deformation that is exerted at the point M
on C onto Ox, Oy, Oz by F, G, H, I, J, K when referred to the unit of length on C.

Finally, introduce twelve new auxiliary functions A",B",C”; A{",B{",C{";
PO, 0", RY; PV,0",R" by the formulas:

AA1<‘)=A1£+A2—(9X , API<”=PIﬂ+Pza—x,

A, 9Py 9P, A, 9Py 9P,

Ao g D0 Apo_p W, p W

A, 9Py 9P, A, 9Py 9P,

and by the analogous formulas obtained upon replacing:

AL A LAY A PP LR P
by:

B,.B,.B".B)".0,,0,.0," 05",
and then by:

C1.C.C"CY R Ry R LR,
respectively.
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We call the analogue of A, A; therefore, we set:

oz\ (oz)
A = 1+[—Zj i i
0x dy

We obtain the transformed relation:

- j j (XA, +YA, + ZA, + Ly, + Mu, + Nuy)A dxdy
+ j(FA +GA, + HA, + Ty, + Ju, + Ku,)ds

” A(l) ‘M A(l) 3/11 B(l) ‘M B(l) ‘M C(l) ‘M C(l) ‘M dxdy
dx ay 0x ay 0x ay

_.”'(Pl(l) aaﬂl + P2(1) aaﬂl + 1(1) ou, + 51) ou, R(l) u, R(l) ou, dedy
X y

dx dy dx dy
)
[[{lew =L p0 - L g |y 4| a0~ A0 0 |y + (B - A, pdxdy =,
dx dy 0x dy

where the integrals are taken over the curve C of the surface (M) and the domain it
bounds, and ds denotes the element of arc-length of C.

We apply GREEN’S formula to the terms that involve the derivatives of 41, A2, 43, w1,
W, (3 With respect to x, y; since Ay, A2, A3, w1, to, us are arbitrary they become:

A(l) A(l)

04, +32 —AX, F=A1(1)Q—Aél)ﬂ,
0x ay ds ds
BV 9B

9B, , 95, =AY, G=BI(I)Q_B§D@’
0x ay ds ds

) 0

&+ac2 =AZ, H=C1(1)Q—C§”ﬂ,
0x ay ds ds

o op" 0z 0z d dx

Loy o S Epo _Zph AL I=p" _y_P2<1>_,
0x ay 0x ay ds ds
Q(l) Q(l) aZ A(l) aZ A(]) Cl(l) _ AIM, J Q(l) dy él) @,
0x ay o ay ds ds

aRl(l) LIk aR(l) B(l) Aél) — AN, K = R(I)Q_Rél)@‘
0x ay Y ds ds

These formulas may be deduced a posteriori from the ones we previously gave. For
example, take the ones on the right. We have seen (se. 35, 1) that F, G, H may be
dpl dpz i

obtained upon replacing the expressions — d
s
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AI%—Adel, BldPZ_Bzdpl, CldPZ_Cdel,
ds ds ds ds ds ds
with
_i(ﬂax +ﬂ8y +Vax} i(ﬂax_l_ﬂay_l_vax}
AL dp, ~ dp, 0P, AL dp,  9py  9p

respectively, in which A, ¢, v denote the direction cosines of the exterior normal to C.
This gives:

1
F=t [/nv% + AV e E A |
L ox dy |
T -
G=A_ [Z+V% + B y+v% By |,
L X dy |
o
H=A_ [Z+V% +C u+v% Cél)},
L ox dy
and similarly:
1
I=— [/nv JP“’ wevpo |
A, dy
| -
J=— (AH/ J o (uﬂ/%J St
A, dy

-

1
K=— [Z+V%JRI(D + y+v% R{"
A, ox dy |

which amounts to saying that one has:

A urv ™
ﬂ= +Va ﬁ_ ay

ds A, ds A,

However, these latter relations result from the formulas:

Aﬂ+ydy+v£—0 dz=%dx+%dy,
ds ds ds 0x ay
which entails that:
dr d dz
ds __ds _ _ ds 1

_(ﬂwazj ,1+V3Z Ajz—ﬂjz A oY
dy o Y o 0x dy
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where the sign in the latter relation corresponds to the sense in which we traverse C,
which figures in the use of GREEN’S formula.

38. Introduction of new auxiliary functions provided by considering non-tri-
rectangular triads formed from Mz, and the tangents to the curves (o) and (0,). —

In sec. 35, 3, we envisioned a tri-rectangular triad Mx,y z in which the Mz axis is
normal to (M). The formulas that give F,,G;,H,,I;,J;,K, lead us to introduce new
auxiliary functions; however, we may also consider the equations to be indefinite and
refer them to a triad that is no longer tri-rectangular, in general, which is formed from the
Mz, axis and the tangents to the (0;) and () curves. This is easily accomplished by

o

using the calculations we already performed by the intermediary of Mx,y z,. It suffices

for us to start with the equations that are obtained with regard to the latter and show the
combinations:

n (1) " (1) n (1) " (1) ”n (1) n (1) ”n (1) n (1)
X5 +Yom, o, X5, +Yon, L& +Myn,”, L&, +Myn,”.
Set:
n_ =) AN @ pr Y @ pn
-’41—2A|+77231’ Az—zAz‘Hsz’
n_ =) AN ) pr n =) pn o) pr
B'=&"A'+n B, B =& A +n"B,,

as well as four analogous formulas for P"Q"P" Q. from them, we deduce:
g 1°=1>172

O > RO W OF -4 O8N 1
A‘r/=772 B'-n"A A;=772 B, -n,

A A
M pgr_ gy OV =Or-1
B = 2A1_161 B = 1A2_ 282
2

b

b

! A A

as well as analogous formulas for P",Q/,P",Q0;. The equations may be written:

A LIy A AL 0,5/-0,5, - AD'CI- AD'CY = A (& X[+ 1K),

0o, 0P,
aBl”_l_ aBzﬂ 2 " 2 " @Brr @B” AD " AD/ "_ (1) " Dy
—+——=-ZA-2,A'-06,5'-0,8/-ADC/ - Cy=A (& X +mY)),
0o, 00,
0C!, 9C; ED'-FD ,, G'D-FD'pp, ED'-FD' ), GD-FD' o\ yu
ap, 09p, A A A A
8731’/ 8732” " " " " 'rph npn "_ M rr [€)] "
—+—=-2P-2.P'-0,90"-0,9/-AD'R'-AD'R, - AC = A (&, Ly + 1, M )

90, 9P,
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a ! a i’ " " n 1 " ! n n ”n "
99,99 s prs pro©0'-0,0'- ADR'- ADR! +AC! = A, (EVL! + "M,

0o, 0P,
aRl + aRl _ 5D —m P”+ gD_fD Ql/r

00, 00, A : A

ED" - FD' GgD'-FD" _,
+ + Q)

"
&

g /I+ f( II—B’)—QB” )
+ A AZA ! = =A,N, .

In these formulas, the six CHRISTOFFEL symbols are designated by X, Z,, 23,

01, ©,, Os:
€ L 0F L 9E GIE L g 08 5 0F
s ___ 9 9p " op o . 90 ap_ " ip,
1= 2 ’ 1= 2 ’
2A 2A
99 _ p o0& 9 _ 99
9P, 00 00 P,
e G 0G o OF 2gOF g5 _ 09
s 90~ op " op, o - P _9p " 9p,
3= 2 s 3= P s
2A 2A

and we let A*D,A*D’,A*D" denote the three determinants that are defined by the identity

")

2

2 2
x o« axd 2 OX d,old,02+j—p)id,oz2

o, 0p, op7 1 apap, 3
2 (g o2 o Ay oo |9y Ay @y o, 3%y 3y
A (Ddp; +2Ddpdp, +Ddp;) =|————5dp; +2 dpdp, +—dp;)|.
3p, 9P, 0p; X 005

2

2 2
B E L app+2 " dpdp, v dp?
op; 0p, ap; 3PP, 0P,

In the preceding calculations, we used the relations:

P = 5D - 8D, A = 1"D =D

P - ED D "D D
0§, & 0§,
1 -nn=04§ +%§&,, 2 —n,n = 1 -, =0,5 +2.8,,
90, 90, 00,

&
P 2 -1, =05 +2.8),

2

' As we will reiterate later on, here we are letting A°D,A*D’ .A*D" denote the quantities that

DARBOUX denoted by D,D',D".
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0 0 0
n1+§1r1=®1§1+21772’ i+§2”1=i+§1”2=@2771+22772,
90, 90, 90,

0
6—772+§2r2 =01 +Z.1,.

2

39. External virtual work; a theorem analogous to those of Varignon and Saint-
Guilhem. Remarks on the auxiliary functions introduced in the preceding sections.
— We give the name external virtual work done on the deformed surface (M) by an
arbitrary virtual deformation to the expression:

6T, = - jco (FJ0'x+G.8'y+ H\0'z+ 1,01' + J.6J' + K.6K")ds,

+ jjc (X[ OX+Y)6Y +Z. 8%+ Lol + M8+ NL.OK YA dp,dp, .

One may give other forms to this formula by introducing other elements. For
example, suppose that one introduces the expressions Xo, Yo, Zo, Lo, Mo, No; Fo, Go, Ho, lo,
Jo, Ko. To that effect, we let oI, &J, 6K denote the projections onto the fixed axes of the
segment whose projections onMx',My',Mz' are O8I',0J',0K’, in such a way that, for

example:
-0l =a"6a' + BB +y'0y' = —(a'da" + BOS" +yOy"),

by always supposing that the axes we are considering have the same disposition. We
then have:

6T =- jco (F,0x+G,0y + H, 0z + 1,61 +J,6J + K,0K)ds,

+| jco (X ,Ox +Y,0y + Z, &z + L8l + M ;0] + N,0K)A dp,dp, .

The force (X;.Y,,Z,) or (Xo, Yo, Zo), the moment (L,,M,,N,)or (Ly, My, No) are
referred to the unit of area of the non-deformed surface. The effort (F,,G,,H,) or (Fo,
Go, Hp), and the moment of deformation (1;,J,,K,) or (I, Jo, Ko) are referred to the unit
of length of the non-deformed contour Cj.

Start with the formula:

| jco SWAdpdp, =0T,

e

taken over an arbitrary portion of the deformable surface bounded by a contour Cy.

Since (WAy) must be identically null, by virtue of the invariance of W and A, under
the group of Euclidian displacements, when the variations dx, dy, oz are given by the
formulas (9), page (?), namely:
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o = (a1 + az — wsy)dt,
oy = (a2 + wsx — anz) o,
& = (a3 + wy — wx)dt,

and dl, dJ, JK are given by:
ol = w o, o = wndr, oK = ax0t,

and the fact that this is true for any values of a1, a2, a3, an, a», a3, we conclude, from the
preceding expression of 07, , that one has:

0 - - R - - R
.[COF ds, J.J-Co X,Aydp,dp, =0 '[Co G,ds, .[J-COYOAOdpldPZ =0
'[Co Hds, - -”Co Z,Adp,dp, =0,

jco(zr0 + yH, - 2G,)ds, - | jco (L, + yZ, - z¥,)A,dp,dp, =0,

and two analogous formulas.

These six formulas that are easily deduced from the ones that one ordinarily writes by
means of the principle of solidification ("). In these formulas, one may imagine that the
contour Cy is variable.

The auxiliary functions that were introduced in the preceding sections are not the only
ones that one may envision. We restrict ourselves to their consideration and simply add
several obvious remarks.

By definition, we have introduced two systems of efforts and moments of
deformation relative to a point M of the deformed surface. The first ones are the ones
that are exerted on the curves (1) and (02). The others are the ones that are exerted on
orthogonal curves that are arbitrary and to be specified, with tangents Mx;, My, that have
arbitrary rectangular and unspecified directions in the plane that is tangent to (M) at M.

Now suppose that one introduces the function W. The first efforts and moments of
deformation have the expressions we already indicated, and one immediately deduces the
expressions relative to the second from this. However, in these calculations one may
explicitly describe the functions that one encounters according to the nature of the
problem, and which are, for example, x, y, z, and three parameters (2) A1, A2, A3, by means
of which one expressesa,a’,-+-,7".

If one introduces x, y, z, A, A2, A3, and if one continues to let W denote the function
that depends on oy, 0, the first derivatives of x, y, z with respect to pi, 0 on A;, A, 43,
and their first derivatives with respect to pi, 0, and, after replacing the different

' The passage from elements referred to the unit of area of (M) and the length of C, to elements referred to
the unit of area of (M) and length of C is so immediate that it suffices to limit ourselves to the first ones, for
example, as we have done.

% For such auxiliary functions A;, A4, 43, one may take, for example, the components of the rotation that
makes the axes Ox, Oy, Oz parallel to Mx', My', Mz’ respectively.
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quantities &, n:, &, pi, i, r; with the values they are given by means of formulas (30) and
(31), we will have:

Ai=AO%’ Bi=AO%’ C =4, a‘(;V )
9P, 90; 9p;
ow — ow ow

Hi=AOW’ ':‘i=AO aﬂ, . 2i=AO aﬂ, .
9—* 0= 90—
9P, 90; 90;

40. Notion of the energy of deformation. Natural state of a deformable surface.
— Envision two states (My) and (M) of the deformable surface bounded by the contours Cy
and C, and consider an arbitrary sequence of states starting with (M,) and ending with
(M). To accomplish this, it suffices to consider functions x, y, z,a,c',---,7" of o1, 02, and
a variable & such that for the value O of A4 the functions reduce to xo, yo, 20, X, V, 2,
a,,a, Y, respectively, and for the value 4 of & they reduce to the values x, y, z,
a,a -+ ,y" relative to (M).

If we make the parameter 4 vary in a continuous fashion then we obtain a continuous
deformation that permits us to pass from the state (My) to the state (M). Imagine the rotal
work performed by the external forces and moments that are applied to the different
surface elements of the surface and the efforts and moments of deformation that are
applied to the contour during this continuous deformation. To obtain this total work, it

suffices to take the differential obtained by starting with one of the expressions for &7 in

the preceding section, substituting the partial differentials that correspond to increases dh
in h for the variations x, y, z, a,a’,---,y" in that expression, and integrate it from O to /.

Since the formula:
67; = _.UC 5(WAo)dp1dp2

A .
gives the expression — .[ J.C %d}z d p,d p, for the actual value of J7;, we obtain:

h A
[ ( ”C a(ith o) 0dp, th - - ﬁc (WA, -WA,),, [dpdp,
for the total work.

The work considered is independent of the intermediary states and depends on only
the extreme states considered (My) and (M).

This leads us to introduce the notion of the energy of deformation, which must be
distinguished from that of action as we previously envisioned. We say that — W is the
density of the energy of deformation referred to the unit of area of the non-deformed
surface.
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These considerations are only the repetition of the ones that we presented in sec. 12;
similarly, the observations relating to the natural state of the deformable line, which was
the object of sec. 13, may be reproduced with regard to the deformable surface.

41. Notion of hidden triad and of hidden W. — In the study of the deformable
surface, as it is in the case of the deformable line, it is natural to direct one’s attention to
the particular manner in which the geometric surface is drawn by the deformable surface.
This amounts to thinking in terms of x, y, z and considering «a,c',---,y" as simple

auxiliary functions. This is what we may likewise express by imagining that one ignores
the existence of the triads that determine the deformable surface and that one knows only
the vertices of these triads. If we take this viewpoint in order to envision the partial
differential equations that one is led to in this case then we may introduce the notion of
hidden triad, and we are led to a resulting classification of the various circumstances that

n

may present themselves when we eliminatec, -+, ".
The first study that presents itself is that of the reductions that are produced by the
elimination of «,a’,---,y". 1In the corresponding particular case in which attention is

devoted almost exclusively on the point-like surface that is drawn by the deformed
surface, one may sometimes make a similar abstraction of (My), and, as a result, of the
deformation that permits us to pass from (Mo) to (M). It is by taking the latter viewpoint
that we may recover the surface called flexible and inextensible in geometry.

The triad may be employed in another fashion: we may make particular hypotheses
on it and, similarly, on the surface (M). All of this amounts to envisioning particular
deformations of the free deformable surface. If the relations that we impose are simple
relations between &, n;, &, pi» qi, i, as Will be the case in the applications we will study,
then we may account for the relations in the calculation of W and deduce more particular
functions from W. The interesting question that is posed is to simply introduce these
functions and consider the general function W that serves as our point of departure as
hidden, in some sense. We thus have a theory that will be special to the particular
deformations that are suggested by the given relations &, n;, &, pi, qi» 1.

We confirm that one may thus collect all of the particular cases and give the same
origin to the equations that are the result of special problems whose solutions have only
been begun up till now by means of the theory of the free deformable surface. In the
latter problems, one sometimes finds oneself in the proper circumstances to avoid the
consideration of deformations. In reality, they still need to be completed. This is what
one may do in practical applications when we envision infinitely small deformations.

Take the case where the external force and moment refer, at the very most, to only the
first derivatives of the unknowns x, y, z and A;, A, A3. The second derivatives of these
unknowns will be introduced into the partial differential equations only by W; however,
the derivatives of x, y, z figure only in &, #;, &, and those of A,, A, A3 present themselves
only in p;, g;, ri. One sees that if W depends only upon &, #;, & or only upon p;, g;, r; then
there will be a reduction of the orders of the derivatives that enter into the system of
partial differential equations. We proceed to examine the first of these two cases.
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42. Case where W depends only upon o, o1, &, n1, &1, &, 2, & . The surface
that leads to the membrane studied by Poisson and Lamé in the case of the infinitely
small deformation. The fluid surface that refers to the surface envisioned by
Lagrange, Poisson, and Duhem as a particular case. — Suppose that W depends only
on the quantities p;, &, 7, &, and not on the p;, ¢i, r;. The equations reduce to the
following:

A A
U 0)+ 09w 0)=A0X0, ﬂ+AOLO=O,
90, aﬂ 00, aﬂ a4
90, 90,
A A
UL °)+ 99w, °)=A0Y0, ﬂ+AOL0=O,
90, aal 90, aaiy 94,
90, 90,
A A
g (W 0)+ J W 0)=Aozo’ aW+A0L0=O,
90, aﬁ 90, aﬁ 94
90, 90,
. . ox 0z .
in which W depends only on p1, 0, a—,n-,—,}q, A2, A3 . If we take the simple case
1 03
where Xo, Yo, Zo, Lo, Mo, Ny are given functions (') of pn, 0, x, y, z

ox L% , A1, A2, A3 they show us that the three equations may be solved with respect

o, ap,
to A1, A2, A3, and one finally obtains three partial differential equations that, under our
hypotheses, refer only to pi, 02, X, y, z, and their first and second derivatives.

We confine ourselves to the particular case in which the given functions Lo, Mo, Ny

are null. The same will be true for the corresponding values of the functions of any
arbitrary one of the systems: (Lo, Mo, No), (L,,M;,N,), (L;,M,,N,). It then results

from this that the equations:

ow ow 0 ow

amount to either:

90, 90, 00, 90,
azAl_axC1+az Az—axC2=0,
90, 90, 00, 00,
Jx B, - dy A 0x B, - dy A, =0,
90, 90, 00, 90,

"To simplify the discussion and indicate more easily what we will be alluding to, we suppose that Xy, Yy,
Zo, Lo, Mo, Nodo not refer to the derivatives of A, A, A5 .
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or to:
S1=0, S, =0, S3=0

in such a way that the effort at a point of an arbitrary curve is in the plane tangent to the
deformed surface and the truncated efforts that are exerted on two rectangular directions
are equal.

This said, observe that if one starts with two positions (My) and (M;), which are

assumed to be given, and one deduces the functions £y, Mo, Np, as in sections 34 and 35,

then, in the case where these three functions are null, one may arrive at this result by
accident, i.e., for a certain set of particular deformations. However, one may arrive at
this result in the case of arbitrary deformations of (M) as well, since it is a consequence of
the nature of (M), i.e., of the form of W.

Envision this latter case, which is particularly interesting. W is then a simple function
(" of pi, pr, £, F, G with the latter three quantities being defined by formula (32) of

sec. 31. The equations deduced in sec. 34 and 35 then reduce to either:

0A! ) . d ,d
Z _I+Qicil_riBiI =A0X(;’ Fy=A4A pz_Azﬂ’
7 9P, ds, ds,

dB! ) ,d ,d
Z —+1,A - p,Ci | =AYy, G, =31&_Bz o ’
—\ 0p; ds, ds,

aC/ ) . d, . d,
E —+ B -q;A |=AZ,, H, =C, pz_czﬂ’
d S, ds,

i i

in which one has:

ow oW ow ow
A=A, 26 g M B =A,| 2 2 i, 2
1 0( §1 ag §2 afj 1 0( 771 ag 772 afj
ow ow
Cl=A,[ 26, 2% 4o, ¢%
1 o( S1 9E S afj
, oW ow , ow ow
A2=A0(§1 = 52@) Bz=Ao(771¥+2772£J
ow oW
C,=A +2¢c,— |,
2 0(5'1 F S agJ
or to:
94 94 _a,x,, F,—A P2 _y 900
0P, 0P, ds, ds,
9B, 9By v, G, -p %Pr_p W
0P, 00, ds, ds,

" The triad is completely hidden; we may also imagine that we have a simple pointlike surface.
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G, 9C _p 7. H, -c, P2 _¢c 9P
0o, 0P, ds, ds,
in which:
A1=A026x8W+8x6W , BI=A026y8W+8y6W ,
ap, € ap, OF ip, € ap, OF

C = A, 2az 8W+ az aW ,
dp, € 0p, OF

A=A aan+2ax ow A 6y6W+28y ow
ap, OF  dp, G ap, OF  dp, G
A (az oW, o GWJ

ap, OF op, 9G

or to:
0A”
2| +a"Cl-r"Bl | = A X, L S
i ap, dSO dSO
OB
Z _,+ri(1)Ai//_ pi(l)ci// — AOY()”, G(I)/ — Bludpz —Bg dpl ,
i ap, dSO dSO
aC!
Z _l+ pi(l)Bi”_Qi(l)Ai” = AOZ(I)/’ H” C”dpz _Cé’ﬂ,
~| ap, ds, ds,
in which:
n aW aW 1/ aW aW
A=A ( £V — él)ﬁj’ B/=A (277(” S +77§”¥j,
ow ow
C'=A.|2 (1)_+ (U_j ,
1 0( 9 9E () OF
ow ow ow ow
An =A (O +2 (1) J B” =A ( @7 +2 (¢)] _J ,
2 0 (5 a g 2 m 6.7-" 772 ag
ow ow
C'=A (O +2 1) _J ,
2 (5‘1 oF P 9G

or, finally, to the equations:

) (1) (€8] (1)
a N 51 1’1(1) r 1 a 11 Nl - 2(1) 1 T =A0X(I)/a
| T 7 N, né) o, T m” N,
9 T 5(1) r(l) ]\/‘1 (1) a 5(1) +r(1) (1) ]\/‘1 _ A Y”
2 - 0fo>
o, [N, ny’ T 7721) 3/02 n"” N, 771(1) T

107
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o T &' _ oV &', wE" T _ M N, =A,Z,
1 1 2 2 - 20700
N, n’ T, m' N, 771“’ T
lld n " ”n d " ”n n
FIE0 AN+ T, G0 AT+ w'N,, H! =0,
ds ds
in which:
aW aW aw
()2 g0 O g0y
A, ow ow
T =200 2500 O 4 (£0p00 4 g0y +2 (1, (1) }
A { (&'n /) ) 2 G
ow ow ow
N, = {( Y g o ) }

As we said, the effort is in the plane tangent to the deformed surface. N; and N, are
normal efforts, i.e., efforts of tension or compression. 7 is an effort that is tangent to the
linear element on which it is exerted, i.e., a truncated effort.

The consideration of infinitely small deformations that are applied to the preceding
surface permits us to recover the surface or membrane that was studied by POISSON and
LAME ().

Observe that, in addition to the formula that we already used to obtain A, we also
have the following:

E=E"+m")y, F=&"8"+n"n", G=(&" +m"),

by virtue of which N;, T, N, may be considered as the functions that are determined by

p1, prand V. EP nV ni.

A particularly interesting case, which we call the case of the fluid surface, is obtained
upon supposing, in regard to the three functions so defined, that one has:

T=0, Ni=N.

If one observes that one has the identities (*):

(51(1))2g_2§l(1) 2(l)f+(§(l)) 5=A2
51(1) l)g (5(1) (l)+ 2(l) 1))f+§(1)77;1)5=0 ,
") G =29, " F + (") €= A,

! POISSON. — Mémoire sur le mouvement des corps élastiques, pp. 488 ff., Mém. de I’Inst., T. VIII, 1829;
G. LAME, Legons sur la théorie mathématique de I’élasticité des corps solides, 2" edition, 1866, 9" and
10" Lessons.

* By virtue of the second of these identities, if 7= 0 for any linear element then one is led to the conditions
that follow, and, as a result, N; = N,; one may content oneself by setting 7= 0.
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that result from the values:
= (éﬂ(l))z + (771(1))2, F = 51(1) 2(1) + 771(1)’751) . G= (52)(1))2 + (7751))2

for the expressions £, JF, G that were defined by formula (32), one sees that the two
conditions that we must set amount to the following:

woaw W

9E __9F _ G
G 2F &

9

which entails that W depends on £, F, G only by the intermediary of the quantity

A =+EF -G* and is, as a result, a function of p1, 0o, and u = AA —1. While continuing

0
to denote the expression of W in terms of o1, 0>, u by W, one will have:

_w

N, =N, e

T=0.

It is easy to obtain the particular form that the different systems of equations in
question take, which are, moreover, combinations or simple consequences of each others.

In particular, by virtue of the equations verified by the £",---,r", and upon denoting

1

the expression Z—W by N, the system on page (?) takes the following form:
U

ON oN )
g g R a X

90, 90,
— 2(1) ﬂ + 1(1) IN _ AOYO”’

90, 90,
1 1 A
R R,) A
upon using the formula:

L S S e S i T/
R, R, Dy _ g0 0

in which R, and R, the radii of principle curvature of the deformed surface (M), figure.

If we envision the particular case in which W depends only on g, and in which (M)
does not figure explicitly, then we find ourselves in the presence of the surface
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considered by LAGRANGE ('), whose study has been reprised by DUHEM (*). Here,
we must make some observations that are absolutely analogous to the ones that we
presented in the context of the flexible and inextensible filament of LAGRANGE. If, as
LAGRANGE and DUHEM supposed, the surface (My) does not figure explicitly then
that surface (My) figures only by the quantity g; its existence is revealed only by that
quantity. If one supposes that the function W is given, like the quantity « that we may
introduce as an unknown auxiliary function in the usual problems, then we may substitute
the unknown N. If the function W is hidden then N becomes, moreover, an unknown
auxiliary function; however, knowledge of that function will give us nothing in regard to
(My).

In the case where the surface (M)) figures only by the quantity «, one may take two
other unknown variables — x, y, for example — instead of p; and p», and if W is given then
one has two unknowns and three equations. If W is hidden then u« figures only in W, and
one is in the same case. In the first case, the remark that was made by POISSON is
repeated by DUHEM (’). We shall develop this remark explicitly, while putting the
equations in the form that was given by LAGRANGE and, more explicitly, by POISSON
and DUHEM (%).

If we solve the preceding equations with respect to g—N and S—N then we obtain:
P1 12

N
ap,

oN

A n n
M B e v
0,0,

A n "
= +XO(X0 1(1) + Yo’?fl)),

however, upon introducing, for the moment, the direction cosines [,I',l"of Mx;,
m,m',m" of My,,and n,n’,n" of Mz, with respect to the fixed axes, one has:

§”=lax+fay+

0o, 9p; 9P,

ox 0 0z
n® =m w2 e =

9P, 9P, 9P,

ox 0 4
¢V en e L X

9P, 9p; 9P,

and

" e=(1) no() _
X5 +Yym =X,

" LAGRANGE. — Mécanique analytique, 1% Part, Section V, Chap. III, sec. II, nos. 44-45, pp. 158-162, of
the 4™ edition.

* P. DUHEM. — Hydrodynamique, Elasticité, Acoustique, T. 1L, pp. 78 ff.
> P. DUHEM. — Ibid., T. II, pp. 92 at the top of the page.

4 P.DUHEM. - Ibid., T. II, pp. 86 and 91.
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The preceding system may be written:

A
ﬂ=—°(xo LI AU A J
Iip, A 9P, 9Py 9P,

A
oN =—°(xoﬂ+yoa—y+z0 9z J
p, A 9P, 9P, 9P,

N(%+éj = %(X0n+ Yn'+Zun'");

this is what one finds, up to notation, on page 86 of Tome II of the book by DUHEM that
was already cited (the sense of the normal to (M) alone is changed).

Introduce the variables x, y, instead of o, m; to that effect, observe that the two
relations that refer to the derivatives of N may be summarized in the following:

A
dN = XO(Xde +Y,dy + Z,dz),

which corresponds, in the particular case in which u alone figures, to the remark made by
DUHEM at the top of page 90 of Tome II of his work.
If x, y are taken for variables then we have the system:

A
ﬂ=_0(xo +Z°£J’

p, A 9P,
A

ﬂ - _O(YO Zo KJ,

p, A 90,

N(%+éj = %(X0n+ Yon'+Z,n");

which is none other, up to notations and with a suitable convention on the sense of the
normal, that equations (31) and (32) of DUHEM.

If we, with POISSON and DUHEM, consider the case in which
A A
XOX 0> XOYO’ ono are given functions of x, y, z (we may assume the same for the

derivatives of z) then we have three equations that refer to the two unknowns N, z.
In the particular case in which the given functions of x, y, z, insofar as they are of

A
issue, are such that XO(X odx+Y,dy + Z,dz) is the total differential of a function V then

the system of three equations, which may be written, as we have said:

A
dN = XO(Xde +Y,dy +Z,dz),
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N[%+éj = %(X0n+ Yn'+Zn")

amount to the following:

N-V=const.=C,

1 1 ov. oV ,dV
Nl —+— |=n—+n—+n —.
0x ay 0z

N is calculated from the formula:
N=V+C,

and the surface (M) verifies the equation (1):

1 1 v oV n,,ﬂ
R, ox ay 9z

(V+C)[E+_ =n—+n—

43. The flexible and inextensible surface of the geometers. The incompressible
fluid surface. The Daniele surface. — We have considered the particular case in which
W does not depend on p;, g;, r; and different special cases of this case. We shall show
how, by the study of particular deformations, one may approach the various surfaces that
were already considered, at least in part, by the authors.

First, start with the simple case, in which the triad is hidden, i.e., the definition of a
simple pointlike surface, and suppose that this is, moreover, the general case in which W

is an arbitrary function of o, o, &, F, G.

1. We may imagine that one pays attention only to the deformations of the surface
for which one has:

&= &, F = Fo, G=0o.

In the definitions of forces, etc., it suffices to introduce these hypotheses and, if the
forces, etc., are given, to introduce these three conditions. In the latter case the habitual

problems, which correspond to the given of the function W, and the general case where £
- &, F - Fo, G — Go are non-null may be posed only for particular givens.
If we suppose that only the function W, that is obtained by setting £ = &, F = Fo, G =

' Compare DUHEM, Elasticité, etc., T. 11, pp. 92, which inspired pages 179-181 of POISSON, Mémoire
sur les surfaces élastiques, which was written on August 1, 1814, published by extract in the May, 1815,
issue of Tome III of the Correspondence sur I’Ecole Polytechnique, pp. 154-159, and then in the Mémoires
de I’Institut de France, 1812, Part two, which appeared in 1816.
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Go in W(o1, 02, &€, F, G) is given, that one does not know the values of the derivatives of

W with respect to &, F, G for €= &, F = Fo, G = Go, and that W is hidden as well, then we

see that N;, T, N> become three auxiliary functions that one must adjoin to x, y, z in such a
way that we have six partial differential equations in six unknowns in the case where the
forces acting on the elements of the surface are given. One therefore has a well-defined
problem only if one adds the accessory conditions. If the deformed figure is assigned a
priori then one has three equations between the unknown functions Ny, T, Ns.

The equations that we arrive at are the ones that define the flexible and inextensible
surface of geometry.

2. We may imagine that one seeks to define a surface that is deformable, sui generis,
whose definition includes the conditions:

&= &, F = Fo, g = Go.

To define the new surface while retaining the same order of ideas as in the preceding we
again define F,,G;, --,N,by the identity:
| jc S(WA,)dp,dp, = jc (F8% +G.8Yy +---+ K, 0K)ds,
- jjc (X[ 6% +Y)6Y +---+ NLOK A, dp,dp,;

however, this identity no longer applies, by virtue of:
&= &, F=Fo, g = Go.

In other words, we envision a surface for which the theory results from the a
posteriori adjunction of the conditions £ = &, F = Fo, G = Go to the knowledge of a

function W(oi, 02, €, F, G), as well as three auxiliary functions wy, o, uz of pi, 02, by
means of the identity:

[] [6W + 10(€ - £) +1,0(F - F) + 11,0(G - G,)1Ad pd o,
= jco (F)8x+G.8Y +-+ K.0K")ds, - jjc (X.8%+Y. 8% +---+ N.OK)A dp,dp, .

This amounts to replacing W with W) = W + w;(€ = &) + wo(F — Fo) + 13(G = Go) in the

preceding general theory rather than setting £ = &, F = Fo, G=Go.
As one sees, we return to the theory of the flexible surface that corresponds to the
function W, of o1, o, €, F, G when one confines oneself to studying the deformations

that correspond to £= &, F=Fo,G=G.
If we put ourselves in the case of a hidden W, then if we suppose that one knows
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simply the value Wy(01, 02) that W and W, take simultaneously for £ = &, F = Fo, G = Go

then we recover the classical theory of the flexible inextensible surface.
Observe that if we constitute the flexible and inextensible surface by taking the

conditions &£ = &, F = Fo, G = Go on W into account a priori by a change of variables

then we are led to replace W with (€ — &) + to(F = Fo) + u3(G — Go) in the calculations

relating to the general deformable surface, and we come down to formulas that once
again bring us back to the study of a flexible surface when one restricts oneself to

studying the deformations that correspond to &€ = &, F = Fo, G = Go . If we suppose that

U1, W, w3 are unknown then these formulas bring us back to the flexible and inextensible
surface of the geometers. If we take this latter viewpoint we duplicate the exposition that
was given by BELTRAMI in sec. 2 of his well-known Mémoire identically. We may
observe that in the case where Xo, Yo, Zo, as expressed by means of these equations, are
the partial derivatives of a function ¢ of o1, 0, x, y, z with respect to x, y, z the equations
in which Xo, Yo, Zy figure are none other than the extremal equations of a problem of the
calculus of variations that consists of determining an extremum for the integral:

” Aypdpdp,
under the conditions:
E=&, F=Fo, g=0.

We consider the case where the surface (M) disappears from the givens and does not
present itself in the question. The variables pi, 0, appear as a system of coordinates to
which the surface is referred. If these variables do not figure in the givens then one may
introduce two other variables in their place at will. If we take this viewpoint, which is the
one that is generally adopted, then the preceding equations, by way of particular cases,
give the various known equations that were studied by the authors. We confine ourselves
to giving several bibliographic indications in the following section.

Suppose that we start with a surface formed by means of a function W of p;, 0, A, or,

if one prefers, of pi, >, and u = AA —1. Imagine that one pays attention (') only to the
0
deformations of the surface for which one has:

u=0.

One will then find oneself in the case of the incompressible fluid surface. In the
definitions of forces, etc., it suffices to introduce this hypothesis, and, if the forces are
given, to pose this condition. In the latter case, the habitual problems that correspond to
the given of a function W and the general case where w is not null demand that the givens
be particular cases.

If we suppose that only the function Wy that is obtained by setting ¢ = 0 in W(1, 0o,

" This viewpoint appears to be the one that DUHEM assumed in his work: Hydrodynamique, etc.; see pp.
91 of Tome II, the last four lines, and pp. 92 at the end of sec. 5.
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) is given, and that one does not know the value of Z—W for =0, and that W is hidden,
U

as well, then we see that the expression N becomes an auxiliary function that one must
adjoin to x, y, z, in such a way that we have four equations in four unknowns in the case
of given forces.

One may again start with a function W, which may refer to the &, 7;, &, as well as the
Di, qi, i, and look for the form that it must have in order for the effort that is exerted on an
arbitrary linear element to be normal and, moreover, in the plane tangent to (M). It is
necessary and sufficient that W depend on &, #;, & only by the intermediary of the

expression A =+/EF -G .

We also mention the surface that is deduced from a function W(,, 0, £, F, G) by the
adjunction of the conditions £ = &, F = Fo, G = Go . In the case where W does not
depend on F one arrives at a surface that was first studied by DANIELE ("). The case in

which W depends on F agrees with that of the flexible and inextensible surface in an

interesting manner. It seems to correspond — better than the latter — to what one may call
army surfaces, or envelopes, such as those of aerostats that are formed from an elastic
substance that is woven from inextensible filaments.

44. Several bibliographic indications that relate to the flexible and inextensible
surface of geometry. — The flexible and inextensible surface of geometry has already
given rise to a great number of works, at least from the mechanical viewpoint. It seems
useful to us to assemble the following bibliographic indications here, which are attached
to that surface.

LAGRANGE. — Mécanique analytique. 3" edition, Part 1, Section V, Chap. III, sec. 2, pp. 138-143; Note
of J. BERTRAND, pp. 140; 4 edition, Tome XI of the Oeuvres de LAGRANGE, Part 1, Section V, Chap.
II1, sec. 2, pp. 156-162; Note of DARBOUX, pp. 160.

POISSON. — Mémoire sur les surfaces élastique; written August 1, 1814; inserted in the Mémoires de la
classe des sciences mathématiques et physiques de I’Institut de France, 1812, Part 2, pp. 167-225.

CISA DE GROSY. — Considérations sur I’équilibre des surfaces flexible et inextensible (Memorie della R.
Accademia delle scienze di Torino, vol. XXIII, Part I, pp. 259-294, 1818).

BORDONI. — Sull’ equilibrio astratto delle volte (Memorie di Matematica e di Fisica della Societa
Italiana delle Scienze, residente in Modina, 19, pp. 155-186, 1821); Memorie dell’ I.R. Istituto Lombardo
di Scienze, Lettere ed Arti, 9, pp. 126-142, 1863; Sulla stabilita e I’equilibrio di un terrapieno (Memorie di
Matematica et di Fisica della Societa Italiana delle Scienze, residente in Modena, 24, pp. 75-112, 1850);
Considerazioni sulle svolte delle strade (Memorie dell’ I.R. Istituto Lombardo di Scienze. Lettere ed Arti,
9, pp. 143-154, 1863).

MOSSOTTI. — Lezioni di Meccanica razionale, Firenze, 1851.

'E. DANIELE. — Sull’ equilibrio delle reti, Rend. del Circolo matematico di Palermo, 13, pp. 28-85, 1899.
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BRIOSCHLI. - Intorno ad alcuni punti della teorica delle superficie (Annali di Tortolini, 3, pp. 293-321,
1852).

JELLETT. — On the properties of inextensible surfaces (Transactions of the Royal Irish Academy, 22, pp.
343-378, 1853).

MAINARDI. — Note che risguardano alcuni argomenti della Maccanica razionale ed applicata (Giornale
dell’ I.R. Istituto Lombardo di Scienze, Lettere ed Arti, 8, pp. 304-308, 1856).

LECORNU. — Sur I’équilibre des surfaces flexibles et inextensible (C.R., 91, pp. 809-812, 1880; Journal de
I’Ecole Polytechnique, 48" letter, pp. 1-109, 1880).

BELTRAMI. — Sull’ equilibrio delle superficie flessibili ed inestensibili (Memorie della Academia delle
Scienze dell’ Istituto di Bologna, Series 4,3, pp. 217-265, 1882).

KOTTER. — Uber das Gleichgewicht biegsamer unausdehnbarer Fléichen , Inaugural Dissertation, Halle,
6 February 1883; Anwendung der Abelschen Functionen auf ein Problem der Statik biegsamer
unausdehnbarer Flichen, (Journal fhr die reine und angewandte Mathematik, 103, pp. 44-74, 1888).

MORERA. — Sull’ equilibrio delle superficie flessibili ed inestendibili (Atti della R. Accad. Dei Lincei,
Rendiconti, Transfunti, Series 3,7, pp. 268-270, 1883).

VOLTERRA. — Sull’ equilibrio delle superficie flessibili ed inflessibili, Nota I and Nota II (A#ti della R.
Acc. Dei Lincei. Transunti, Series 3, 8, pp. 214-217, 244-246, 1884); Sulla deformazione delle superficie
flessibili ed inestensibili (Atti della R. Accad. Dei Lincei, Rendiconti, Series 4,1, pp. 274-278, 1885).

MAGGI. — Sull’ equilibrio delle superficie flessibili e inestensibili, (Rendiconti del R. Istituto Lombardo di
Scienze ed Lettere, Series 2, 17, pp. 686-694, 1884).

PADOVA. — Ricerche sull’ equilibrio delle superficie flessibili e inestensibili, Nota I and Nota II, (Arti
della R. Acc. Dei Lincei, Rendiconti, Series 4,1, pp. 269-274, 306-309, 1885).

PENNACHIETTI. — Sull’ equilibrio delle superficie flessibili e inestensibili (Palermo Rend., 9, pp. 87-95,
1895). Sulle equazioni di equilibrio delle superficie flessibili e inestensibili (Atti Acc. Gioenia (4), 8,
1895). Sulla integrazione dell’ equazioni di equilibrio delle superficie flessibili e inestensibili (Atti Acc.
Gionenia, (4), 8, 1895).

RAKHMANINOV. — Equilibre d’une surface flexible inextensible (in Russian). (Recueil de la Soc. Math.
de Moscou, 19, pp. 110-181, 1895).

LECORNU. — Sur [’équilibre d’une envelope ellipsoidale (Comtes rendus, 122, pp. 218-220, 1896;
Annales de I’Ecole normale supérieure (3), 17, pp. 501-539,1900.)

DE FRANCESCO. — Sul moto di un filo et sull’ equilibrio di una superficie flessibili ed inestensibili,
Napoli Rend., (3),9, pp. 227, 1903; Napoli Atti (2), 12, 1905.

45. The deformable surface that is obtained by supposing that Mz is normal to
the surface (M). — We propose to introduce the condition that Mz' is normal to the
surface (M). We may imagine that this is accomplished, either by starting with the
previously-defined deformable surface and studying only the deformations of that surface
that verify the conditions:
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(42) G =0, & =0,

or by defining a new deformable surface for which one develops the theory, by analogy
with the first one, but keeping conditions (42) in mind.

We take the first viewpoint and study the deformations of (M) that verify the
conditions (42); suppose, in addition ('), in view of the study of the infinitely small
deformation and in order to form a continuous sequence of surfaces that start with (Mo),
that one has: ¢ = ¢ =0.

It suffices to introduce the hypotheses (42) into the formulas of sec. 34 and following
in order to obtain the expressions of the various elements that figure in the theory.
Conversely, if, to fix ideas, we are given the forces and external moments then one must
adjoin the two equations (42) to the six equations that result from that given, which
shows that if the function W, which serves as the point of departure, is given then one
may not give the forces and external moments arbitrarily.

However, observe that upon confining ourselves to the study of those that verify (42),
we have, above all, the goal of constituting a particular surface; upon following this idea,
we are therefore led to distinguish three cases: 1. the function W is hidden, and we know
the function W, relative to the particular deformations under consideration, and
constituted from the essential elements of the deformations. 2. the function W is again
hidden (i.e., not given), and we know relations (differential, for example) that relate W
and the traces (here, three functions) of the function W. 3. the function W still hidden, and
we know the functions that recall the existence of W, either partially or totally.

We develop these possibilities by entering into the details of the calculations.
Because of conditions (42) the triad, instead of depending on the six parameters x, y, z,
A1, A2, A3, depends on only four parameters, for example x, y, z, m where we are letting m
designate the angle defined by the formula:

tgm=ﬂ

2

which represents one of the angles that the axis Mx' makes with the curve (0,) in (M).
Let A’D,A*D’,A’*D" designate the determinants defined by the identity that we gave

in sec. 38, page (?), which depend only on the derivatives of x, y, z, and are independent
of m and its derivatives. In addition, recall the formulas of the same paragraph
(CHRISTOFFEL symbols):

e € o 0F 0

2 _ apZ apl apl
t 2A2

9

©
1
study of the infinitely small deformation.

" The conditions ¢ - géo) may be omitted in our actual exposition and figure, in summation, only in the
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99 _ &
__9o _ 9p,

: 2A?

9

and, from the conventions we made:

A=&m-SHn.

To determine the rotations p1, g1, 1, P2, 2, 2 one has the following formulas "):

p1=§1D/_§2D’ p1=§1D/_§2D’

P, = §1D” - §2DI > 9, = 771D” - 772DI 5
om XA om Z,A

R=—-—+ , r,=——+ :
ip, & p, €&

The translations are calculated from the prior system:

ﬁ=tgm, 512"'7712:5’ §& +mm, =F 522+7722=g‘

&

As one sees, the translations are expressed by means of m and the first derivatives of
x,y, z. The rotations pi, g1, p2, g2 are expressed by means of m and the first and second
derivatives of x, y, z. Finally, the rotations ry, r, are expressed by means of the
derivatives of m and the first and second derivatives of x, y, z.

If one substitutes these values in the function that is obtained by making & = & =0 in
W, a function that we shall denote by WO, to avoid confusion, then we obtain the function

om om C .. .
Wo of p,,p,,m,—,——, of x, y, z, and their first and second derivatives, which, as a

0O 00,

. om . . .
result, depend on the expressions m,—,--- by the intermediary of the nine independent
1

expressions:
! n
m, g, f, g,rl,rz, D,D ,D b

or, what amounts to the same thing, by the nine independent expressions &, 171, &, 12, 1,
r, D,D",D".

Let W, designate the function of these nine latter quantities that gives W, upon

substitution for their values; WO' results from W; by the substitution for py, g1, p2, 2.

" DARBOUX, Lecons, T. 11., pp. 363, pp. 378-379, nos. 495 and 503 give identical or equivalent formulas;
we represent the quantities that DARBOUX denoted by D, D', D" in the form A*D,A*D’ A*D" .
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We have a function W that refers to the nine arguments that we enumerated along

with o1, 0, whereas W refers to the ten arguments &, m, &, m, p1, q1, 1, P2, G2, 12,
along with oy, 0.

We must stop on an important point that results, by definition, from the consideration
of one of the equations to which DARBOUX gave the name of CODAZZI, namely, pi 7
- q1&% - pam + q2& =0, and study the equations of statics for the deformable surface in
the case that we examine.

The function W, is deduced from W’ by substituting the following values for pi, g1,

P2, g2
P = §1D/ -&D, q, = 771D/ -n,D,
P> = §1D” - §2DI ) 9, = 771D” - 772DI )

it results from this that one has:

! 0 0 0 ! 0 0 0
W, _ oW +aW D,+6W D W, _aW" oW D_aW D
05  d&  dp, ap, &, 9&  ap ap,

! 0 0 0 ! 0 0 0
W, _ oW +aW D,+6W D W, _aW" oW D_aW D
an,  Jdn,  dq 99, an, dn,  9q, g,
W, 9w’ W, oW’
or, or, ’ or, or, ’
ow/! ow? ow? ow/! ow? ow?°

Ce—&, - 7 =& +1, :
oD ap, a4, D ap, 04,

ow, ow’ ow’ ow’ ow’
;= 51 _52 +17 -1, >
oD apl apz a% a‘h

where we are continuing to let w designate the result of substituting for pi, g1, p2, 2.

. . . . om
Suppose that one introduces the expressions for these variables in terms of m,a— KL
£
in these formulas, and that one takes (42) into account. Observe that the formulas:

C1/=Aoﬂ’ C£=Aoﬂ’
96, 95,

do not permit us to calculate C,,C,, if W is hidden because we must account for (42);
however, the other formulas give the other expressions Al' ,-++, in terms of the derivatives

of W°. For instance, one has:
(ﬂj _ow!
W) Jmoco P

The nine formulas that we deduce are given by:
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Ao —aVVO = All + D'P1'+ D"le "
&,
8, Mo _pipigre D),
an,
ow
A,—2 =R/,
or,
oW, ’ ’
A0 G'DO = _§2P1 _772Q1 >

oW,

oW,

_0
0

a5,
A

0
7,

oW,

A

Ay —

or,
aw,

A_
’ 9D
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- 4 -DF-DF,,
-B,-DQ-D'Q.,
-R.,
=5P+n0,,

A0 G_'DO/ = 51P1/+ 771Q1/ - §2P2, _772Q£ >

where we write Wy instead of W, in order to indicate that one must replace the arguments

om

& .-+, D" by their values as functions of m,—,---

ap,
When only the function W, is known we no longer have to calculate the ten auxiliary
functions A/,---, besides C|,C,,and the nine equations; by definition, when Wy alone is

known, what remains are three arbitrary functions.

In order to study the system of equations for the statics of the deformable surface we

[N

apply the formulas that relate to the triad Mx,y,z, to the triad Mx'y'z". In the former triad,

we find auxiliary functions that are defined by the formulas:

"41’ = §2A|’ + 77231, >
Bl’ = §1A|’ + 77131’ >

[

‘Az’ =§2A2’ +7723;’

B, = §A, +1,B,

and four analogous ones for B,9Q,,P/,Q, The nine previous formulas may be written:

aW aW ! ! ! 1 i
Ao(fz S+ 1), OJ=A1+D7’1+D7’2,
&, an,
aW aW ! ! ! " !
A{g—%m OJ=BI+DQ1+D Q,
&, an,
LA
or,
ow ow.
A 0=_7D’, A 0= /_7)/,
0 aD 1 OaD/ Ql 2

A0 [52

oW,
JE,

+17),

ow,
A0 [51 _0"'771

A0

A0

0&,

oW
0 - Ré,
or,

w,
G'D" _QZ *

GWJ=&—DRLUH,
an,
a% j = le _DQ]’_D’Qz’ )
an,

Consider the six equilibrium equations that were given in sec. 38; the first two of the

second group give AC, and AC) :
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A =BT s ps P -0,0/-0,0) - ADR, - AD'R, - A (L + 1,M))
00, 0P,

_AC_ZQ 292_27? ~3,P/-0,9-0,0; - ADR - AD'R, - A (5 L] +1,M}).
o 0P,

Substitute these values in the three equations of the first group; if we write the third
equation of the second group, and we are left with the system:

a " r a ! ! 2 r alp a,P’
U, = —EaT )
9P, 900, 90, 900,
D22 DL (I Pl -, (W4 DR D'R) -2, (A - DR - D)
pZ pl

—0,(B+D'Q+D'Q)-0,(B.-D'Q -D'Q))+2(23,D' -5, D" -3, D)P
~(©,D-20,D/+0 D")Q - P) - A(DD" ~D*)R + A, (£ X, +1n,Y))
+AD'(& L, +n,M})-AD"(EL +nM)) =0,

a ! ! ! ”n " a ! ! ! ! a ! r
=—B+D'Q+D"Q)+—(B,-DQ/-D'Q)+D—-(Q'-P))
9P, 90, 90,

2D 2% _p99% _pIR 5 (44 DQ+DP)-5,(A -DR-DP)
90, 9P, 9P,

—0,(B'+D'Q +D'Q)-0,(B.-DQ'-D"Q)) +2(-20,D' +© D" +0,D)Q,

+(222D' - ZID" - Z3D)(Q,' - 732') +A(DD" - D'z)Ré -A, (le(; + anJ')

+AD(E L +n,M))-AD' &L, +nM,) =0,

12 2 ! l 2y l i
(a 7321_6 Q-P) 4 szj_@l+222 LA Q-
Ip; 90,00, 90, A dp Adp, Adp,
QL(QI’—P;)—QGQZ+2®2+Z36QQ+ 0 2 4 2_ Sop =D |P
A dp, A dp, A ip, |dp, A dp, A A
+ ig_ig_f(pp”_pﬁ ) [(Q/-P) + 9 g_i%_g(pp"_pﬁ) Q
o, A dp, A A o, A dp, A A
+5D ;m(A/_I_D/,]Dl/_I_ D/I732/)+GD_JTZ) (Bll'l‘DlQll‘l'D”QZl)
gD”—m/ ' ' 1y gpl_m” l ! Y
+ = (A = DR-D'R)+ I =—(B,-DQ-D'Q)
a '/’ "p! a ! ! a A ! !
-—(D'R/+D R2)+—(DR1+DR2)——[—°(’§2LO +772M0)}
£ 90, o L A

0 | A , , ,
+—[—° (&L, +771M0)} -AZ; =0,
o, L A
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= OB, OB %(A D'P'+D'P)

0o, 9P,
f ! ! 2 ! ! ! ! n ! ! ! ! ! n
+ A - DR = DB (5/+ D'Q)+ D'Q)I - (B, - DQ - D'O)) ~AN; =0,

upon remarking that for the formation of the first three equations the CODAZZI
equations are, with our notations (1):

DIDII_D/2=IC
£—£+23D—222D’+21D"=0,
0p, 0P,
£—£+®3D—2®2D’+81D”=0,
00, 0,

where IC designates the expression that is formed uniquely from &, F, G, and their first

and second derivatives, and represents the total curvature of the surface, and we also
remark that:

alogA=®l+22, alogA=®2+23,
90, 90,
*log A
and that, as a result, when we equate the two values of we get:
30,0p,

90, 90, 0%, o3,

9

00, 9P, 9P, 9P

0 2__LZ_=_(L@__L@_J__(&_&_@2 +@2J

or:

9o, A dp, A o, A dp, A ) Al dp,  dp,
2, o2
=A(a_z__3_@222+@123}
AL dp, dp,

46. Reduction of the system in the preceding section to a form that is analogous
to one that presents itself in the calculus of variations. — From the preceding

calculations it results that the auxiliary variables Al',~~-, or, what amounts to the same

thing, the .A1' , ... are all eliminated from these equations, even though their number is

' These equations are immediately deduced from the ones that were given in T. III, pp. 246, 248, of Lecons
by DARBOUX upon performing a change of notations and observing that:

dlogA dlogA
=0, +Z,, =0, +2,.
90, 00,
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greater than one. This is also an a priori consequence of the habitual considerations that
one makes in the calculus of variations when the expressions for the external forces and

moments have a particular form.

We shall put the equations that result from this elimination into a form that one may
deduce from the calculus of variations in the case where expressions for the external

forces and moments are given in a particular form.

We begin by replacing the arguments &, 71, &, 12 in W, which are functions of the

arguments m, £, F, G by their expressions that one deduces from the formulas:

m
&

to which we adjoin the formula we already used:

§1772 - 52771 =A,

which only defines the sign of &, 7.
From this, we deduce:

—=1igm, 512"'7712:5’ §1§2+771772=~7:’ 522'”722

F A

E =+Ecosm, E =—=cosm—-—=sinm,
! toJE JE
F A

=~+Esinm, =——=sinm—-——cosm,
771 772 [5 [g

in which \/E denotes a determination of the radical.

If we let [Wy] denote, for the moment, the function of o1, o2, and m, &, F, G, r1, 12,

D, D', D" so obtained then we have the relations:

oW, |

g 9

aw,

1

AW,1 1 oW, . aw,

T~ T 771 _52 ’
oF Al ag, TCom,

AW,1 1(_ow,  aw,

—— == &—"-n ;
G AT ap, T ag

AW,1 . oW, W, W W

0 =& 0_771 0+§2 0_772 0

om o, o, 917, a8,

To abbreviate the notation, we set:

al’ - All + D”]Dl’+ DII,]DZI ,

L oW, oW, ) L (. oW, oW, ). G (. oW,
—=— & —+ -—— + +
IE 25(“‘5’:l PERr j 25(52 g " an, ) 2eA o an

2

-

a,=A-DR-DP,

0&,

]
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bl'=Bl'+D'Q,’+D”QZ’, b;=Bz,'—DQ,’—D’QZ'.
We have the relations:

dW,A,) N IW,A,) _ b aW,A,) N IW,A,) _

b b/ b
& ’E m an, | & 2, ! o, 2
oW, A,) oW,A,) , oW,A,) oW,A,) ,
g - +17, o =4, & — +17, o0 =d,,
a&, an, a8, an,

from which we deduce the following expressions for the derivatives of (WpAy):

IW,Ay) _ 772b1/ _771“1/ IW,A,) _ nzbé _771‘1;
&, A IE, A

a(Wvo) _ §2a1/ _§2b1/ a(Wvo) _ gla; —fzbé
an, A ’ in, A ’

which permits us to calculate the different combinations formed from the derivatives of
(WoAy) in terms a;,b,,a,,b,. We thus obtain:

ow,1 1., 1, ¢g( F, &N 1, F , FG ,
A, =—b-—a,+——|-——b,+—a, |=—b + ~a, - b, ,
o 2E 2E 2EA\ 2A A 2E 2EA 2EA

W, F ., G,
M TR
aw,1 ¢ , F
Tog aa TN
ow,1 £, F , .. G,
Mo TahT AT
from which one deduces:
a, =éA0 —a[W"] +2FA, oW +0A, —a[W"] ,
£ om & oF
bl =2E&A, OIW, ] + FA, W, ] ,
oF
a, = AA, {]—" W | +2G a[WO]},
oF oG
b, = AA, {5 Wl +2F a[WO]},
oF oG

in such a way that if we denote the function [Wy] by Wy then the fen auxiliary functions
other than C/,C, are defined by the following nine formulas:
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A1/+ D/731/+ D//,]Dz/ — é a(WOAO) + 2f a(W/OAO) + g G(WOAO) ,
s om 0 OF
’ Y " a(WA) a(WA)
B'+D'Q+D"Q =26 — 22y F—0 07
+DQ % 0E OF
' P IW.A,) dW.A,)
_DP-D'P = A FL0) o 0B) |
A -DR-D'P, { i) 520 }
) ) ) IW,A,) (WA,
B -DQ' -DQ =AleL0Z0) o D02 L
| _DQ - DY { L W }
cr-a, Mo ct-a, Mo
on ar,

Define the direction cosines y,y’,y" of the normal Mz’ to (M) by the formulas:

1 a0 1 8
Ad(p,.p,) Aa(py.0,)

1 d(x,y)

V4 = .
A d(p,,p,)

Y

125

First, we have the following identity, in which we introduce the notations that we just

now defined in place of the derivatives of Wy:

0° dW,A) a1 aW,A) a7 aWA) 9 aWA,) 9 aWWA)

opi ,0'x 0pdp, , 0'x apy J0'x  dp o X ap, o 0x

Ip; P9, 305 P, 30,

2 1 ’ 2 1 r_ l 2 1 ’
Loy | (Aﬁj_a x@-m| #(fe]

ox Ip; P10, 0;

e _F e _F
9ol a oo, | ol e T ap | .
pl plCl_I_ 1 lC

+ 2
ap, | 9p, EA ap, EA

_i{ ﬁ'_l_]-"za;_}"gb;j ox +(_]—"2a;_(jb£j ox

ap, [LE &N EN )ap, A AN )ap,
9 aax ] faax 9 5aax ] f:x
+ %) P D'y |C+ %) O | D'y




126 THEORY OF DEFORMABLE BODIES

D ., oD , D", ; b, \ o
D o P o py I gl 9 {(—ff“g;j x
aﬂ aai aﬂ 00, A A” ) ap,
9P, 90, 90,
+ &l; _ﬂzz ox +DyC{+D'}/C§—£R'
A A" ) op, aaix
00,
oD’ , oo OD"
+ ©Q-P)+—9, ;.
0x 0x
Jd— J—
90, 90,

In order to obtain this identity in the form that we used we have to use the relations (1):

9E e, + 73, 9 oo, + 73,
90, 90,
207 99 _ 2(E0, - F%,), W 0F 98 _ 2FO, +GX)),
00, 0P 00, 00,
) 0
—g=2(f@2+g22), —g=2(]-“®3+923),
0 0,

whose solution gives the values of the CHRISTOFFEL symbols Z;, 2, 23, O, O,, O3, or,
conversely, the values of the six derivatives of £, F, G, and this permits us to eliminate

these derivatives of £, F, G. We have also used the relations (2):

2
9 )i =0, 0x +2 0x + DAy,
ap,

9P, 90,
2
0" x =0 0x +2 0x +D'Ay,

- 2

oo, o ap,s

2
9 )i =0, 0x +3, 0x +D"Ay,
90, )

" Ip 90,

which permits us to eliminate the second derivatives of x, y, z, and gives rise to two series
of formulas that are analogous to the ones obtained by replacing x, y by y,y" and z,y"

g A dlogA

. dlo
! We continue to use the relations: =0, +Z,,

90, 00,

=0, +2,.

2 DARBOUX. — Lecons, T. 111, no. 702, pp. 251.
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with the direction cosines defined by formulas that are deduced from the formula for y by

circular permutation.
Consider the different expressions that are presented in the preceding calculations.

First, let:

azlA _5£+25£_}“ﬁ
o _~ & __ 0 9P, 900 9P,
g x5 0x o 0x 2AE

0o 9o 9P,
2
ox o0& 28x6.7-" 1 ox oF fax

- 5 - 2

2AZ, ox  Z, dx ox ap, 0p,  9Ip, 0p, 2 9p, dp, )

=TT L T T o g —f +
E dp, AE\ Ip, P, AE
29 (70, +G5,) - (g0, + - F I
__2A% 0x _E (pox _pox ) op LT ap T 6P
E ap, AE\ T ap, T ap, AE ’

on the other hand, one has:

g 0% _ F Ox
9 9o,  9p
ap, AE

2 2
o Ox 58x oF ox fﬂ gax fﬂ

_ 90, 9p, 90,90, 9P, 9P, 0o 9P, _ 9P, £(O, +22)+£
AE AE p,

2
2(96)((5@14-‘7-21)-'-5(@26)(4-22ax+D,ij_aax(f®1+g21+g®2+.7'22)_F2)§
0

2 1 2 1 1

) AE
v o
0 0
—%[5(& +3)+2(60, + F3)].
From this, it results that:
5 A g 0% _pox
£ 0 "op "oy,
5.0%  9p, AE
ap,

Similarly, one has:
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128
aAzz 5&_?%
o, e o |Tap " ap,
ox ox 0x 2AE

_ 0 0——

9P, 90, 90,

ox oG 1 ax 9E F 0%x

2,A ox 3, (g o g 0 j+ ap, dp, 29p, 9p,  Ip,Ip,

AE

& ap, AE 00, 00,
2% (70, 405, -0 (g0, + Fz,) - F O

__2ZAox 3 a0k pox) Top T op T dpdp,

E ap, AE\ ap, 90, AE '

On the other hand:

ax o
9 9o, 9Ip,
ap, AE

2 2
656x+ 8)2_8.7-"&_ 0°x gax_}_ﬂ
_9p0p, 9Py Ly 0p  0pop, 0P 0P| g 4wy 9
AE AE? 2 ap,
ox ox 0x " ox 9%x
2—(EO,+FZ)+EO, —+2, —+DAy)- — (€O, + F=, + FO, + G= ) - F
00, 90, 9P, 90, 00,00,
AE
el oF
—%[5(@2 +3)+2(60, + F2,)],
from which, it results that:
2,A gﬂ_}“aix

0

5 a apz apl = —D”}/

- )

ox  dp, AE

90,

Furthermore, one has:

A3, _e % g 9T _pOE

on £ 9 9P, 9o 9p
ox ox ox 2AE
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o’x 1 ox 98
__Z[g0x _pox) opl 20p 0p
A€ ap, p, EA
ox ox ox
EO,—+Z —+DAy)- — (€O, + FZ))
=_i < dx - 0x N o) 00, o) _Dy
AE\ ap, ~ ap, EA ’
a& 5ﬁ—.7:£
o, _~ g _ 0 0o 9p,
5 0x 3 0x 3 0x 2AE

’x 1 ox o€

3, (5 x|, apdp, 24p ap,

A€\ ap, p, EA
ox ox , ox
O, —+2, —+DAy)-—(£0, + FX,)
_ 2| o 0x _F ox N 90, 00, a0, _Dy.
A€ ap, p, AE

We modify the identity that we obtained, which gives us two analogous ones upon
replacing x, y with y,y’, and then by z,7".
We shall develop the parentheses in such a way as to show us the left-hand sides of

the equations of statics of the deformable surface with the forces abstracted. To that
effect, we use the relations (*):

dy FD'-GD ix +.7-"D—5D' 0x

b

9P, A ap A Ip,
dy _FD'-GD' ox FD'-ED" ix
0P, A 9p, A op,

which gives rise to two analogous systems that are obtained by replacing x, y with y,y’,
and then by z,7", and which entails that:

ag_f’D’—gD ox  FD-ED ox 0,43,
ap, A dp, A ap, A 4
al ”n ! ! ”n

A=.7’D—Q'D 8x+fD—5D x  0,+3;
90, A ap, A dp, AT

i.e.:

' DARBOUX. — Lecons, T. 111, no. 698, pp. 244-245.
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PR gﬂ_}"ﬂ gﬂ_ ox
A _ 90 90 _ 90, p, B+,
DT & P AL
1
y £ 0x F 0x G 0x F 0x
. —_—— - - __
_A _ T apz apl Ty 8/01 8p2 _ @2 +23
=-D 2 D 2 /4
90, A A A

We thus arrive at the statement that if one denotes the left-hand sides of the equations
of statics of the deformable surface by U,, U, V, VV then they express that we are led to

consider reproducing all of the terms that are independent of the external forces and
moments that figure in:

o g ix i

aplU + a apZ aplW .
A’ 2 ap, AE

gaa;_fa(jg ap
| 2y, - 2

_}/V — A2

Changing x, yinto y,y’, and then into z,y" gives two analogous results.
On the other hand, VW = 0, may be written:

0 AWA) 9 dWA,) _aWA)

N. =0.
90, 9 aﬂ 90, 9 aim am
00, 90,
One therefore sees that if one sets:
0x 0x

e _F

A, = A X, +—| yBaf Oy Dy 9|0 9,
o | AL "o, P, P, A€

A
9 y_o(%ﬂmoa_ymoﬁj |
p, | A\ " ap 9P, 9P,

and two analogous formulas that are obtained by replacing Xy, Xo, x, ¥ with Mo, Yo, v,

y',and then with 2y, Zo, z,y", respectively (along with L, aa_x +---and L, ox +--+), the
P1 P1

equations of statics for a deformable surface may be summarized in the following relation
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(1): [[ow,A)dpdp, + [[ Ay (X0x 426y + 2,62 Nydm)d pd p, =0,

in which one considers only the terms that are ultimately presented under the double
integral sign.

The preceding result may be generalized: suppose that one expresses &i, 71, &, 72 as
a function m, &, F, G by the formulas:

g =\/Ecos(m+u), g =%cos(m+u)—%sin(m+u)
n, = \/Esin(m+u) n, = %sin(mﬂt) +%cos(m+u),

where u denotes an arbitrary function of just &£, F, G; the equation V¥V = 0 may then be

written:
A A A
a W, 0)+ . oW,Ay) oW, °)+AON(;=O.
90, aaﬂ 90, aaﬂ am
90, 90,
Upon forming the combination:
i, S
% % % %
_}/V_ lA2 2U1— 2A2 1 U2
ax_pox
N 0 00, 0p, ou 0 ] du
90, AE 0 O0x 90, 0 O0x
9P, 90,

and the two analogous ones that are obtained by replacing x, y with y,y’, and then with
z,y",one finds three equations, the first of which is:

P OWA) 0 90hA) 5 9 5 AWA) 0 90%A,)
op; Ox apdp, . x dp, x dp 50X 9p, 4 0x

+A,X, =0

o} 90,00, 03 Py 0,

upon setting:

2
" This relation is analogous to the formula.[ l (0T +U")dr = 0 that TISSERAND gave for HAMILTON’s
X

principle on pp. 4 of T. I in his Traité de Mécanique céleste.
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a1 A 9 9 9 9 5aax_j:;x

X 'y < u 1Y 0, '
AO/‘(O=A0X0+8—l yf(lﬂ +M, +N, j+ aﬂ_ zAg L AN,
00,

A :
o y_o(Loﬂ+Mof’_y+NoﬁJ_ w5 |
p, | AL ap, p, 90,) 5 9%
900,

These four equations may be summarized by:

| jco {LOW,A) +A (X, 0x+0x+ Z,0x-N.Sm)dpdp, =0,

in which one considers only terms that are ultimately presented under the double integral.

The summary form that one is led to, and which will be treated according to the rules
of the calculus of variations, is particularly convenient for performing changes of
variables.

If we suppose that the expressions Xy, Vo, 2o, N('J have a particular form then we will
have the extremal equations for a problem of the calculus of variations.

We consider the particular case (1) in which WyAy does not depend on r;, r» and
depends on &, &, 11, 12 only by the intermediary of £, F, G; this amounts to saying that

the final expression for WyAy does not depend on m,a—m,a—m, and is a function of py,

90, 9P,
02, and the six functions:
g,f,g,D,D’,D"

of the first and second derivatives of x, y, z.
In addition, if we suppose thatN(; = 0;if Ay, Wb, Zo do not depend on m then we

ultimately have three equations that relate to only x, y, z, and which may be summarized
in the formula:

[ 6W,A)dpdp, + [ A(X,0x+ X0y + Z,02)dpdp, =0.

In the particular case in which U denotes a function of p;, », and x, y, z, and

' What follows may also be applied to the case in which WA, is arbitrary; the essential hypothesis is the
one made for £y, Mo, Np. One may also imagine the case in which WA, is of degree one with respect to

ry, r» . The coefficients of the latter are constants or, more generally, independent of 0, and g,
respectively.
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y = La(y—’z),y',y”,one has, in addition:
Ay 9(py,p,)
Uy U, U
0x ay 0z
Loﬂ Moay+N0 8Z=_8U oA +8U/ oA +aU” oA
P, P, oo, | 9y 40X Iy 49y ay" 5 9T

00, 00, 00,

gz | U oA +6U 0A +6U 0A
00, 90, 00, ay 0 0x a}’/aﬂ a}’”aﬁ

9P, 90, 90,
Ly+M,y'+N,y" =0,

one then has:

_dUA) 9 daUA) o dUA))

o ap g ap, 5o
9P, 90,

A, X,

0° ™0

and two analogous formulas, and one obtains the three equations for the extremals
relative to the integral:

”AO W, +U)dp,dp, .

The preceding formulas amount to setting:

U, 0U
Ly=y—-v —,
ay ady
LU U
My=y —=-r—:
ady ady
oUu U
No=y—— -7 -
ady ay

all of which result from the fact that they,y',y" verify the following system, which

defines a function F of 0x , 9y RPN 0z :
0o, 9p; 9P,

oF oF oF oF oF oF

aax aay aaz aax aay aaz

900, _ 9p, 0P 00, 9P, _ 9P,
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An interesting particular case of the preceding one is the case in which the expression

AW, .
—29 'when one takes x and y as the variables, depends — other than on x, y — only on the

derivatives of z with respect to x, y; it is easy to find the form of Wj.
Observe that the two expressions:

dx® +dy* +dz”°, —(dydx + dydy + dy'dz),
may be written:

Edp} +2Fdpdp,+Gdp;, ANDdp!+2D'dpdp,+D'dp;),

from which it results, by virtue of the formulas:

dx =ﬂdp1 +ﬂdpl,

90, 90,
dy = a_ydpl + ﬂdpl >
90, 90,

that one has the identities:

Edpl2 +2Fdpdp, + gd/022 =1+ p>)dx” +2pgdxdy + (1+q°)dy®

A(Ddp} +2D'dpdp, +D"dp; = ;(rdxz +2sdxdy + tdy?) .

Ji+p*+q°

From the theory of the invariants of quadratic forms, one has:

a(x. ) }
rradl

EF-G*=(01+p? +q2){
(0, 0,

) 2
A (DD -D?) =3 { ox.) } ,
I+ p +q° | 3(p,0,)

<1+q2>r+<1+p2>r—2pqs{ a(x.y) }
|

JI+p*+q° (0, 0,

and, as a result, when we pass to absolute invariants, we get:

AGD + ED" -2FD') =

rt—s2

(1+p+q°)"
GD+ED" -2FD' _ (1+q*)r-2pgs+ 1+ p°)
A (1+p2+q2)3/2 *

DD// _ D/Z —

We recover two well-known expressions for the total curvature and the mean curvature.
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0 WO

The case that we are dealing with then the one in which is a function @ of py,

02, and the two expressions:

e 1,1 _gD+eD"-2FD"

RR, ’ R R A

in which R, and R, denote the radii of the principal curvatures.

If we take x, y for variables then the formula that summarizes the equations of statics
of the deformable surface may be written:

§.U¢«/l+ P’ +qzdxdy+J.J.%(X06x+3{]§y+20§z)«/l+ P’ +q dxdy =0.

The function under the j I in the second integral is:

A 9P, 90, 2

ﬁ{(xoﬂ+%ﬂj§p (Xaa—x+3{)a j§p2+Z(5z}\/1+p2+q2
P 2>

and, as a result, since @ does not refer to the derivatives of p;, 0> the equations of the
problem become:

2 1 2 2 a 1
9% A1+ p +q)+ K2 (¢\/+p +q) A, /71”) v g’ 2 =0,

ox* or dx
ay A
—(¢\/1+p +q ){ %asz" 1+p°+4q° =0,
1
ay A
—(¢x/1+p +g ){ %ango 1+p +q’ =0.
2

In particular, suppose that ¢ does not depend on p;, 0, and it depends uniquely on
1

Ri+R,

1 L .
and ; this gives the equations:

2 a '1 2 2
62 (gy1+p"+q +---+ﬁ\/1+p2+q220=0,
0x or A

X =0, Jo=0

One may write:
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A o[, A o[ A a(x, )
AKX, =12o X Ji+pPeg® -S| 2oL, + N, }_[_OM”\, } |
0% {A NPT R =Ty (Ly + Nop) [+=—1 ¥ (Mo + Nog) W

A ol A al A 3(x.)
A y = 0 Y R _0 +N :l_l__l: _0 M +N :l ,
020 {A}/” 0 oy _}’ A (Lo op) o 4 A ( 0 oq) —a(pl,pz)

A A A
AOZ°={ 7 — }/”_O(Lo+N0p)}+i[}’”_o(Mo+NOQ)}}—a(x,y) :
A}’ ay - A ox A a(pl’pz)

We may combine the two equations Ay = 0, )b = 0 with the preceding ones. For

example, we may introduce the combination y X, + ')} + y"Z, upon taking:

92 I+ p* + 4> A 1 , ,
2 @ af q)+~-+X°\/1+p2+q27(y?€0+}’%+}’Zo)=0.

0x

If the givens in the equation that we write, or in other combinations, are suitable then
P01, 02 might no longer appear and, by the preceding equation, one will thus have an
equation for the surface. The equations:

X =0, Jo=0,
serve to define o1, o as a function of x, y (or inversely), and may be left aside if one

abstracts from the natural state.
Consider the particular case in which the function ¢ is a linear function with constant

2
.. . 1 . .
coefficients with respect to (—j and ; i.e., a function of the form:
+

+C,

2
A(—l j +B !
Ri+R, RR,
in which A, B, C are constants. The constant B disappears from the question according to
a remark that was first made by POISSON in his memoir on elastic surfaces (1), and was

then reprised and generalized by OLINDE RODRIGUES (), and, in the case in which all
of the external forces are null, we summarize the equation in question by:

" POISSON. — Mémoire sur les surfaces élastique, dated August 1, 1814 (Mémoires de la Classe des
Sciences mathématiques et physiques, of 1’Institut de France, year of 1812, second Part, pp. 167-225); an
extract of this memoir first appeared in the Bulletin de la SociJté¢ Philomatique, and then in the
Correspondance sur 1’Ecole Polytechnique, T. III, pp. 154-159, 1815.

> RODRIGUES. — Recherches sur la théorie analytique des lignes et des rayons de courbure des surfaces
et sur la transformation d’une classe d’intégrales doubles, qui ont un rapport direct aves les formulas de
cette theorie. Correspondence to I’Ecole Polytechnique, T. III, pp. 162-182, 1815; in particular, see pp.
172, et seq.



THE DEFORMABLE SURFACE 137

2
(5”[%+éj J1+ p* + g dxdy +c(5ﬁ\/1+ P’ +q’dxdy =0,

which is the conclusion that POISSON arrived at in his own researches.

In conclusion, observe that by the consideration of infinitely small deformations the
general developments of this section easily lead to the theories of THOMSON and TAIT
(1) and LORD RAYLEIGH (2); we leave to the reader the burden of taking this approach
and studying the case with which one is concerned in detail (*).

47. Dynamics of the deformable line. — The dynamics of the deformable line are
attached to the preceding exposition. To see this, it suffices to regard one of the
parameters — p;, for example — as time 7. One will then have an action consisting of
simultaneous deformation and movement. Under the influence of the triad, the velocity
of a point of the deformable line enters into W by way of the three arguments &, 72, & ,
and one finds oneself in the presence of the notion of anisotropic kinematics that was
already envisioned by RANKINE, and which has since been introduced into several
theories of physics, such as the theories of double refraction and rotational polarization,
for example.

Similarly, if W is independent of rotations and leads to null external moments then the

argument of pure deformation & +#] +¢/ and the argument £ +7; +¢, are generally

accompanied by the argument & &, + 7,77, + ¢,5,. Such a type of argument is no longer
new in mechanics and appears, notably, in the theory of forces at a distance, as we shall
show later on.

When W does not contain the mixed argument &&, +1,7, +¢,¢, it is necessary, in

general, to consider the infinitesimal state of deformation and motion of the natural state
in order to find oneself in the case of classical mechanics in which the action of
deformation is completely separate from the kinematical action. One thus obtains
D’ALEMBERT’S principle upon supposing that the external force and moment are null,
1.e., upon expressing that the deformable line is not subject to any action from the
external world, and introducing, as a result, the fundamental notion of an isolated system,
of which we spoke at the beginning of this note.

The dynamics of the deformable surface may be established in the same manner by
means of the theory of the deformable medium of three dimensions, which we shall now
discuss.

' THOMSON and TAIT. — Treatise, Part 11, no. 644.
> LORD RAYLEIGH. — Theory of Sound, vol. 1, 2" ed., 1894, pp. 352.

? It amounts to the infinitely small deformation of an originally planar surface.
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48. Deformable medium. Natural state and deformed state. — The theories of the
deformable line and the deformable surface that we discussed lead, in a very natural
manner, to envisioning a more general deformable medium than the one that is habitually
considered in the theory of elasticity, and seems, to us, to achieve the goal that was
pursued by LORD KELVIN and HELMHOLTZ in the theories of light and magnetism.

Consider a space (My) that is described by a point My, whose coordinates xo, yo, 2o
with respect to three fixed rectangular axes Ox, Oy, Oz. We may regard these coordinates
as functions of the three parameters pi, 0., 03, which are chosen in an arbitrary manner;
however, to simplify, we suppose that these coordinates are taken to be independent
variables. Affix a tri-rectangular triad to each point M, of the space (M), whose axes

M x,,M,y,,M,z, have direction cosines &, ,c,,ay;By.Bq-Bas YosVe»Ye With respect to
the axes Ox, Oy, Oz, and which are functions of the independent variables xo, yo, zo .
The continuous three-dimensional set of all such triads M x;y;z, will be what we call

a deformable medium.

Give a displacement MyM to a point My; let x, y, z be the coordinates of the point M
with respect to the fixed triad Oxyz. In addition, endow the triad M x,y,z, with a
rotation that will ultimately bring its axes into agreement with those of a triad Mx'y'z’

that we affix to the point M. We define that rotation by giving the direction cosines
a,a\a";B,B8.8" v,y ,y" of the axes Mx',My',Mz' with respect to the fixed axes.

The continuous three-dimensional set of all such triads Mx'y'z" will be what we call

the deformed state of the deformable medium under consideration, which will be called
the natural state in its original state.

49. Kinematical elements that relate to the states of the deformable medium. —
For ease of notation, we sometimes introduce the letters o1, 02, 03, instead of xo, yo, zo In
the sequel, as expressed by the formulas:

Xo = 1, Yo =, 20 = 2,

so it will suffice to keep them in mind.
Denote the components of the velocity of the origin My of the axes M x,,M,y,,M,z,

with respect to these axes by £”,n",c” when p; alone varies and plays the role of
time. Likewise, let p!”,q'”,r'” be the projections on these axes of the instantaneous
rotation of the triad M x;y,z, relative to the parameter o; . We denote the analogous
quantities for the triad Mx'y'z" by &, m:, &, and p;, g, r; when they, like the triad
M ,x}y,z, are referred to the fixed triad Oxyz.

The elements that we introduced before are calculated in the usual fashion; in
particular, one has:
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0x , dy , 0Z
=a +a +a , =—
b o, ap, I, -2 o 6/0, 2 & 6/0,
dx , dy s 0Z 60{
43 = + + , 44 a——=— —_—
@ m=r I, & p; / p; @ -2 6/0, "0,
ox ,dy 0z d
Si=y— Yy, =Yl b
9p; 9P, 9p; 6/0, 90;

The linear element of the deformed medium (M), when referred to the independent
variables xo, yo, zo, 1s defined by the formula:

ds® = (1+2¢&)dx; +(1+2¢&,)dy; +(1+2¢,)dz;
+2y,dy,dz, + +2y,dz,dx, + +2y,dx,dy,,

in which ¢, &, &, y1, 12, y3 are calculated by the following double formulas:

’ 0z ’ e ) -
N -
82:5( j (ayoj (ayoj }5(52-“72"'52—1),
) 83=%(f’zoj (azoj (a@j }%@5*’7%55—1),

ox ox dy dy oz

4 * + = 5 5 +1,1;, +6,55,

1 ayo 0z, Iy, 9z, 9y, 97, 253 N/ ,$3
ox dx dy dy 0z 6

72 0z, dx, 9z, dx, 0z, 0x, = && + 1031 + 636
0x o0x dy 9y 0z 6

= + + = + + .
Y3 o oy, ax, oy, ax, ay, & +mm, +6.5,

Denote the projections of the segment OM onto the axes Mx',My',Mz' by x',y’,z’, in

such a way that the coordinates of the fixed point O with respect to these axes become
- x',-y',~z'. We have the following well-known formulas:

! ! !

(46) & - grany =0, g -k =0, g - py e gy =0,
op 9 9

i i i

which gives new expressions for &, #;, & .
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50. Expressions for the variations of the velocities of translation and rotation of
the triad relative to the deformed state. — Suppose that one endows each of the triads
of the deformed state with an infinitely small displacement that may vary in a continuous
fashion with these triads. Denote the variations of x, y, z; x',y',z; a,a’,--+,y" by &, oy,
0z, ox',0y',07; da, 0, ,0y", respectively.  The variations Ja,dc',---,0y" are
expressed by formulas such as the following:

(47) da = BOK' - ydl',

by means of the three auxiliary functionsdl’,d/',0K’, which are the components of well-
known instantaneous rotation that is attached to the infinitely small displacement in
question with respect to Mx',My',Mz'. The variations dx, dy, ¢z are the projections of the

infinitely small displacement felt by the point M onto Ox, Oy, Oz. The
projections d'x,0"y,d'z of this displacement onto Mx',My',Mz' are deduced immediately

and have the values:
48) Ox=&"+7'0J' -y OK', Sy=0y'+x0K'-7'0l', 67z=0+y'0l'-x'd]".

We propose to determine the variations &&, o, 0&, dpi, Oqi, O felt by
&, ni, &, pi, qi, 1, respectively. From the formulas (44), we have:

I, = Z(%é}f + y%}

9P, 9p;
ay a0y
=D | ——da+a——|,
% Z(api ’ aap,»j
da doa
or, = —p+p—|.
" Z[ap,» / ﬁap,»j

Replace da by its value BoK' - ydJ', and da',---,8y" with their analogous values; we
obtain:

49)  op, =(zi+qi(5K'—ri(5J’, 5, =Zﬂ+ri(5[’—pi(5K’, 5, = 2K

i i i

+p,dJ' —q,dl'.

Similarly, formulas (46) give us three formulas, the first of which is:

a ' ! ! ! !
égi = aéé +q,07 —1,0y +7'8q, — y'or,.

1

Replace dp;, dqi, Or; with their values as given by formulas (49); we obtain:
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o0&, = niéK’—gid]’+?+ q,0x-r0Yy,

(50) on, =¢,0l' - 0K’ +<?9(5_y +r0y-p,oz,

1
!

égi = gié]/_niéll+%+ piélz_qt'élx’

1

in which we have introduced the three symbols 6'x,8"y,d'z defined by formulas (48).

51. Euclidian action of deformation on a deformable medium. — We preserve the
notations of sec. 49 and introduce the known quantity, A, which is defined by the
formula:
ox dx  ox
ox, dy, 0z,
__D(x.y.,z) _|dy dy dy

D(x,,y,,2,) |0x, 9y, 9z,
dz dz 0z

ox, dy, 0z,

and whose square, which is formed by the rule for multiplication of determinants, is
expressed as a function of &, &, &, 1, y2, 73 by the formula:

1+2¢ 7, Y2
N =]y, 1+2¢, 71
V2 V1 1+2e¢,

Consider a function W of two infinitely close positions of the triad Mx'y'z’, ie., a
function from xo, yo, 20 to x, y, z, &, B, p,a',B',y",a",B",y", and their first derivatives

with respect to xo, yo, z0. We propose to determine the form that W must take in order for
the integral:

j ” Wdx,dy,dz,,

when taken over an arbitrary portion of the space (My) to have null variation when one
subjects the set of all triads of the deformable medium, taken in its deformed state, to the
same arbitrary infinitesimal transformation of the group of Euclidian displacements.

By definition, this amounts to determining W in such a way that one has:

W =0,
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)

when, on the one hand, the origin M of the triad Mx'y'z' is subjected to an infinitely small
displacement whose projections dx, dy, ¢z on the axes Ox, Oy, Oz are:

o =(a, +w,z-w,y)ot,
(51) oy =(a, + wy,x —w,7)0t,
0z =(a; + W,y —w,x)ot,

where a1, az, as, @i, @, w; are six arbitrary constants and ¢¢ is an infinitely small quantity
that is independent of xo, yo, zo, and when, on the other hand, the triad Mx'y'z’ is

subjected to an infinitely small rotation whose components along the axes Ox, Oy, Oz are:

wot, wdt, wiot.

Observe that in the present case the variations 0&;, o, 6&; dpi, dq;, or; of the eighteen
expressions &, #i, &; pi, i, i are null, since this results from the well-known theory of
moving frames, and as we may, moreover, verify immediately by means of formulas (49)
and (50) by replacing 6'x,08'y,8'z;61',6J',0K' by their actual values. It results from
this that we obtain a solution to the question by taking W to be an arbitrary function of xo,
Yo, 20, and the eighteen expressions &, #;, &; pi» qi» ri. We shall now show that we thus
obtain the general solution (') of a problem that we now pose.

To that effect, we remark that the relations (44) permit us to express the first
derivatives of the nine cosines a,a’,---,y" with respect to xo, yo, Zo by means of these

cosines and p;, g;, r; using well-known formulas. On the other hand, formulas (43) permit
us to think of expressing the nine cosines a,a’,---,y" by means of &, 7, &, and the first

derivatives of x, y, z with respect to xo, or by means of &, 1, &, and the first derivatives
of x, y, z with respect to yo, or, finally, by means of &, 73, &, and the first derivatives of
x, y, z with respect to zo. Furthermore, it is useless in this case for us to make any
hypothesis on the mode of solution because it is clear that we will not obtain a more
general form than the one that we started with by supposing that the function W that we
seek is an arbitrary function of xo, yo, Zo and x, y, z, and their first derivatives with respect
to xo, Yo, 20, and of &, n:, &; pi, i, ri, Wwhich we indicate by using the notations p; = xo,
= Yo, 03 = 20, by writing:
ox dy 0z

W=W 'axa aZa_a R
(p’ "0, "ap, ap,

,5,»,77,»,5,»,19,»,61,»,13}

Since the variations 0&, on;, 8&; dpi, &q;, Or; are non-null in the actual case one remarks
that there is an instant, which we shall ultimately describe, for which we have, by virtue
of formulas (51), the new form for W for any a;, az, a3, o, an, ws :

"In all of what follows we suppose that the medium is susceptible to all possible deformations, so that, as a
result the deformed state may be taken absolutely arbitrarily.
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aW§x+aWéy+ (5Z+z ow ax ow 66)} ow éaz _o.
0x ay 0z aﬂ 9p; aﬂ 90; aﬂ 9p;
90, 9P, 9P,

We replace dx, dy, oz with their values (51) and (5— 0—— 9y (5— with the values
0o, 0o 9P
that one deduces by differentiation. We set the coefficients of a1, az, az, @, a», ws; we
obtain the following six conditions:

Wy W, W,
ox ay 0z
> a?/ az_a?/ v |_o > axg/ ax_a?; 2| _,
90 9P, 90 9P,
z ow ay_ oW ox _0
X dp, 5 dp |
90 9P,

which are identities, if we assume that the expressions that figure in W have been reduced
to the smallest number.

The first three show us, as one may easily foresee, that W is independent of x, y, z
The last three express that W depends on the first derivatives of x, y, z with respect to xo,
Yo, Zo only by the intermediary of the quantities ¢, &, €3, 7, )2, ;5 that were defined by
the formulas (45). Finally, we see that the desired function W has the remarkable form:

W(xo, Yo, z0, &, mi, Ci; pi» qi, 1),

which is analogous to the one that we encountered before for the deformable line and the
deformable surface.

If we multiply W by the volume element dxodyodz, of the space (Mo) then the product
Wdxodyodzy so obtained is an invariant in the group of Euclidian displacements that is
analogous to the volume element of the medium (M).

Just as the common value of the integrals:

msl Al dx,dy,dz, .

j j L dxdydz,

taken over the interior of a surface Sy of the medium (M) and the interior of the
corresponding surface S of the medium (M), respectively, determines the volume of the
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domain bounded by the surface S. Likewise, if we associate, in the same spirit, the notion
of the action for the passage from the natural state (My) to the deformed state (M) then we
add the function W to the elements in the definition of a deformable medium, and we say
that the integral:

”LO Wdx,dy,dz,,

is the action of deformation for the interior of the surface S in the deformed medium.
On the other hand, we say that W is the density of the action of deformation at a point
of the deformed medium when referred to the unit of volume of the undeformed medium,

w . . . . .
and that TAT is the density of that action at a point when referred to the unit of volume of

the deformed medium.

52. The external force and moment. The external moment and effort. The
effort and moment of deformation at a point of the deformed medium. — Consider an
arbitrary variation of the action of deformation of the interior of a surface S in the
medium (M), namely:

S[f[ Walx,dy,dz,
oW oW oW oW . oW . aW
= J.J-LOZ(aa o8, + o on; + oc s, + o, op, + » oq, + or érijdxodyodzo.

By virtue of formulas (49) and (50) of sec. 50, we may write:

W : L S
o I, Walsydyodz, =IILOZ{3_§(77,»(5K -5 +a_p,.+q,»6z—néy)
+Z_W(5‘f<51’-§ﬂ51<'+?ﬂ+m—p,.a'z>
+Z_W(§id],_niél,+%+pié,y_qié.,?()

1 1

+M(ﬁ+q,(5K,_WJ+ﬂ(ﬂ+¢,I_piéKfj

1

ap, \ ap, g, i
K/ 12 !
+ﬂ &+ p,0J —q, 0l |rdx,dy,dz,.
ar; \ 90

We apply the GREEN formula to the terms that explicitly refer to the derivative with
respect to one of the variables o1, 02, p3. If we let [y, mo, ny denote the direction cosines
with respect to Ox, Oy, Oz of the exterior normal to the surface Sy that bounds the
medium before deformation and the area element of that surface by dy then this gives:
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ow ow |,
(5”_[ Wdx,dy,dz, = ” { 0E +m, oE, +n, 0, X

ow ow ow |, ow ow ow |,
+| [, +m, +n, oy+|1, +m, +n, 0z
an, 017, 017, as, g, ¢,

+| [,

ap,

+(l0 W, m, W . n, aWjéK’}dao
or, or,

or,

M5

9 oW oW awﬂ,
+7, - D, Oy

oW ow ) ., oW ow oW ) .,
+n, Jé[ + (lo +m, +n, Jd]
) ap; dq, dq, 99,

+

ap, an, ' IE b g,
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b

b

9 oW oW oW |,
+ z + p; —dq; éz
Ip; s, an; 0
.\ 2 9 oW ‘e oW . oW o oW —5,» oW |5
0/0; 0p; or,; 0q; g, a7, ) |
9 oW oW oW oW _ ow)|.,
- Z =P+ =& oJ
ap, 9q;  Ip, ar, &, ;)|
. 2 9 oW . oW —61,» oW s oW . W ) |sg dx,dydz,.
ap, ar, aCI, ap, (977[ agt
Set:
14 oW oW 14 oW oW
F)=l,—+my—+n,—, I =1, ——+m, —+n, —,
a&, a&, 08, p ap, p;
, oW oW oW 14 oW oW
G, =1, +m, +n, , Jo=ly,—+my—+n,—
an, 017, 077 0q, 0q, 04,
H(')=lan+man+nOaW, K(’)=lan+man+nOaW
95, g, 0g; on or, ory

X! =Z{ 9 aW+qi aW_riaW}

ap, 0 ac. A&

v - z{a ow 'aW_p'aW}

ap, oy, aE  Piac
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apl agz 6771 ag,
9 oW oW oW 77aW aw}

, 9 AW W oW
ZO=Z{ +p—-q }

L’ = + -7 + -
°meqw Vg, Mo, han,
Mé=Z 0 6W+rlaW_pi6W+iaW_§laW
Ip; 9q;  Ip; o &, IS,
, Jd oW ow ow ow ow
NO = Z + pi - CIi 5{ - 771 ’
apt art aqt apt a i agt

we have:

(5”];0 Wdx,dy,dz, = HS (F)ox+G.oy+H.07+1,0l' +J 0]+ K,0K )do,

- ”L (XX +Y. 8y +Z,07+ Lol + M.OJ' + N.OK "dx,dy,dz, .

If we first direct our attention to the triple integral that figures in the expression
foro .[ -US Wdx,dy,dz, then we call the segments that have their origin at M and whose

projections onto the axes Mx',My' .Mz’ areX,.Y,,Z, and L,,M,,N,, respectively, the
external force and external moment at the point M referred to the unit of volume of the
undeformed medium.

Next, directing our attention to the surface integral that figures in:
S| L Wdx,dy,dz,,

we call the segments that issue from the point M and have projections -F,,-G;,-H,
and -1;,-J;,-K,on the axes Mx',My',Mz',respectively, the external effort and external
moment of deformation at the point M of the surface Sy that bounds the medium referred
to the unit of area of the surface So. At a definite point M of (S) these last six quantities
depend only on the direction of the exterior normal to the surface (§). They remain
invariant if the region in question is varied and the direction of the exterior normal does
not change, but they change sign if this direction is replaced by the opposite direction.
Suppose that one traces a surface () in the interior of the deformed medium that is
bounded by the surface (S) in such a way that (), together with a portion of surface (),
uniquely circumscribes a subset (A) of the medium, and let (B) denote the rest of the
medium outside of the subset (A). Let (Z) be the surface of (Mj) that corresponds to the
surface (S) of (M), and let (Ag) and (By) be the regions of (My) that correspond to the
regions (A) and (B) of (M). Mentally separate the two subsets (A) and (B). One may
regard the two segments (-F,,—G,,—~H,)and (-1,,-J;,-K,) that are determined by the
point M and the direction of the normal to (Zo) that points towards the exterior of (Ap) as
the external effort and moment of deformation at the point M of the frontier (X) of the
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region (A). Similarly, one may regard the two segments (F,,G,,H;)and (I;,J;,K;) as
the external effort and moment of deformation at the point M of the frontier (X) of the
region (B). By reason of that remark, we say that -F,,-G,,-H, and-1,,-J,,—-K/ are
the components with respect to the axes Mx',My',Mz' of the effort and moment of
deformation that are exerted at M on the portion (A) of the medium (M), and that
F,,G,,H, and,,J,,K, are the components with respect to the axes Mx',My',Mz' of the
effort and moment of deformation that are exerted at M on the portion (B) of the medium

(M).

The observation made at the end of secs. 9 and 34 on the subject of replacing the triad

Mxyz by a triad that is invariantly related to it may be repeated here without
modification.

53. Various ways of specifying the effort and moment of deformation. — Set:

A=Wy W W

eg T g T ag
poW oy W W
ap; 9q; or,;

A',B/,C/ and P.,Q/,R' represent the projections onto Mx',My',Mz' of the effort and
moment of deformation, respectively, that are exerted at the point M on a surface that has
an interior normal at the point M, that is parallel to the coordinate axis Ox, Oy, Oz that
corresponds to the index i before deformation. Indeed, it suffices to recall that one has
already agreed to replace the letters xo, yo, o, which correspond, by this notation, to the
indices 1, 2, 3, respectively, with o1, 0o, p3. If you recall, that effort and moment of
deformation are referred to the unit of area of the undeformed surface.
The new efforts and moments of deformation that we define are related to the
elements introduced in the preceding section by the following relations:
F, =1,Al +myA, +n,A;, I, =1,P'+m,P, +n,P,,
G, =1,B/ +m,B, +n,B,, J, =1,0 + m,0, +n,0;,
H,=1,C +m,C, +n,C;, K,=I,R +m,R,+nyR;,

0A!
Z —+q,C; _’?B;j_ X, =0,

0B’
Z _l+riAi, - piC;j_Yol =0,
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P/

Z a—’+q,»R,»' - 1,0/ +n,C; _§iBiIJ_L(,) =0,

00!

Z a_Ql"‘riPil_ PR +5 A _giC;J_M(; =0,
P

OR'
E a_l + piQiI - qz'Pi"" giBi, - UiAi'J - N(; =0.
0

i

We propose to transform these relations into ones that are independent of the values
of the quantities that we calculated by means of W that figure in them. Indeed, these
relations pertain to the segments that are attached to the point M to which we gave the
names. Instead of defining these segments by their projections on Mx',My',Mz',we may
define them by their projections on the other axes; the latter projections will be coupled
by relations that are transforms of the preceding ones.

Moreover, the transformed relations are obtained immediately if one remarks that the
original formulas have simple and immediate interpretations (') by the adjunction to these
moving axes of axes that are parallel to them at the point O.

1. We confine ourselves to the consideration of fixed axes Ox, Oy, Oz. Denote the
projections of the external force and external moment at an arbitrary point M of the
deformed medium onto these axes by Xo, Yo, Zo, and Ly, My, Ny, respectively, and the
projections of effort and moment of deformation on a surface whose interior normal has
the direction cosines [y, mg, np before deformation by Fy, Go, Hy and Iy, Jo, Ko,
respectively. The projections of the effort (A',B/,C/) and the moment of deformation
(P,Q/,R)) are denoted by A;, B, C; and P;, Q;, R;, respectively. The transforms of the
preceding relations are obviously:

F, =1,A +myA, +n,A,, I, =1,P +m,P, +n,P,,
G, =1,B, + m,B, +n,B,, Jo =1,0, + m,0, +n,0;,
H,=1C +m,C, +n,C,, K,=I[R +myR,+nR,,

0A, | 0A, 04,

-X, =0,
ox, dy, 0z,
B B, 0B
81+62+ 2 -Y, =0,
ox, dy, 0z,
aC
6C1+8C2+ s _7. -0,
ox, dy, 0z,
P, 0P, 0P
61+62+ 3+Clay+Czay+C3ay—BlaZ—BzaZ—B3aZ—LO=0,

ox, dy, 09z, 0x, ay, 0z, 0x, 0x, 0x,

' An interesting interpretation to note is the analogy with the one given by P. SAINT-GUILHEM in the
context of the dynamics of triads.



THE DEFORMABLE MEDIUM 149

d
90, +8Q2 + o, + A 9z +A, 9z + A, 9z -C, ox -C, ox -C, ox -M, =0,
ox, dy, 0z, 0x, ay, "0z, 0x, 0x, " ox,
R R, OR
R, L ORy (R (g 0% g X g 0% 4 g 4N N o,

ox, dy, 0z, 0x, ay, 0z, 0x, 0x, 0x,

relations that are the three-dimensional generalizations of the two-dimensional equations
of LORD KELVIN and TAIT.

2. Now observe that we may express the nine cosines a,a’,---,7" by means of three
auxiliary functions; let 4;, A2, A3 be three such auxiliary functions. Set:

D oydf == pdy =w\d +wydh, + widA,,
Dady = =Y yda = xidh + x,dA, + xidAs,
D Pda ==Y adff = 0ydA +0ydA, +04dA;.

The functions @/, x/,0, of A1, A, A3 so defined satisfy the relations:

aw aw—[/ ! ! ! O
_ -t o.-y.o =0,
oA ox,  KOITA
ax' 9y
X om0l =0, (i,j)=1,2,3.
04, aﬂj ! !
ao_j ao-ll w_/ ! w_/ ! —O
A, A, X @ik =T
and one has:
, 04, , 04, , 04,
P, =0, +w, +w, >
9p; 0 90,
, 04, , 04, , 04,
q, = X, + X, + X —> (or xo = P1, Y0 = P2, 20 = 03)
o, oap, “ap,

JOA L, 0A, 0,
r=0—+0,—+0, .
9P, 9P, 90;

Let @i, i, o denote the projections onto the fixed axes Ox, Oy, Oz of the segment
whose projections onto the axes Mx',My' ,Mz' are @], x,,0!; we have:

Za'da” = —Za"da' =w,dA, +w,dA, +w,dA,,
dd'da ==Y ada" = ydA + x,dA, + xydA,,
D ada' ==Y a'da =o0,dA +0,dA, + 0,dA,,
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by virtue of which (1), the new functions @;, y;, o of 41, A2, 43 satisfy the relations:

07, 9@, _ o o
A, oA, X% = X%
iy, dx,
-Zli-ow -ow, (i,)=1,2,3.
A7 )
90, _ 390, =w w
0%, 0A, K = Wik

Again, we make the remark, which will be of use later on, that if one lets
OAi, 042, 043 denote the variations of A;, A», 43 that correspond to the variations
oa,oa -+ ,0y" of a,a',--+,y" then one will have:

o' =w 0\ +w,0A, +w;0A,,

A" = 310 + 2,00, + X300,

OK' =0,0A, +0,0A, + 0,04,

Ol =adl' + o]+ yOK' =@, 0A, + w,0A, + w,0A,,

o =a'0l' + O]+ yOK' = y,04, + x,0A, + 04,
0K =a"0l' + B'0]"+y'0K' = 0,04, + 0,0, + 0,04,

in which dI, &J, SK are the projections onto the fixed axes of the segment whose
projections onto Mx',My' ,Mz'are 6l',0]',0K'.
Now set:
1, =ZD’1’I(; +X1’J(; +01,K(; =wl,+xJ,+0K,,
Ty =ZD';I(; +X£J(; +O'£K(IJ =w,l,+ x,J, +0,K, ,
Ky =@l + )3 J o+ 0Ky =@, 1, + 0., + 03K,
[0 = wl’L(; +)(1’M(; + O'llN(; =L+ M, +0,N,,
/\/{0 =ZD’1’L(; +X1IM(; +O'1IN(; =w, L, + M, +0,N,,
No =ZD’1’L(; +X1’M(; +O'1’N(; =L, + M, +0,N, .

In addition, we introduce the following notations:

! ! ! ! ! !
Hi =w1Pi +X1Qi + OlRi = wlpi +X1Qi +01Ri’

" These formulas may serve to define the functions @, y;, g;, directly, and the substitution is defined by:
@ =aw +fy +yo’,

x =aw + By +yo’, (i=1,2,3)

n_r " __r

o =a'g' +BY +y'o.
i i i i
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/%Y Y !

X, =@,P + 0,0, +O,R, =@, P + x,0, + O,R,,
' DY "'p!

2, =wF + 0,0, + O3R, =@ P, + 4,0, + 0,R,,

then, instead of the latter system in which either P,Q/,R’or P;, Q;, R; figure, we have the
following:

Iw, , ax, , [ o0] ' '
—L-P + -0 +rw| - R | —+p.x, —qw
4) z |: t{ap ql 1){} Qz(ap pl j z[ap[ pz)(l QI lj

apl i i
+ A,' (Xlg,' - 0'1/77,') + B,'/(O'llg,' - wfgi) + Ci/(wllni - Xllgi)]’

with two analogous equations. If one remarks that the functions &, n:, &, pi, qi, ri of

A, o, Ay, S 3% 0%

give rise to the formulas:

oo, 0p, o,
35 p, 0w, , ,
0 =0, ——=——4+q.0, -1 X,
d g d
aZ’ o' § —w' 5 =0, _aj]{ ax’ +rw -p; o,
J J
ag , or, do, , ,
+@’ £ =0, — =L v —q @,
oA, = X8 o1, " ap, +pXi— 4,0,

that result from the defining relations of the functions @/, x;,0/, and the nine identities
that they verify, then one may give the preceding system the new form:

L, = Z /95, B»'%—C,»'%—B'%—Q;%—R;ﬂ
6/00 M A ax oA oA oA

b

with two analogous equations.

3. The preceding equations that we introduced also constitute the generalization of
the ones we developed in an earlier work (‘). We may transform them in such a way as to
obtain the generalization of the well-known equations of the theory of elasticity that
relate to effort. To that effect, it will suffice to reproduce the method we already
employed in the work that we mentioned.

To abbreviate the writing, let X,,)),Z, and £;,M;, N, denote — for the moment —

the left-hand sides of the transformation relations, which refer to Xy, Yo, Zo, Lo, My, No,
respectively, and observe that one may summarize the twelve relations that we
established by the following:

' E. and F. COSSERAT. — Premier mémoire sur la théorie de 1’élasticité; Annales de la Faculté des
sciences de Toulouse (1), 10, pp. I} — 1116, 1896.
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[[[ oA+ 30 + 20, + Lot + Mgty + Ny ey dz,

- .”{(Fo —lyA —myA, —nyA) A +(Gy = 1,B, —myB, —n,B;)A,

+(H,-1,C, -m,C, —n,C))A, +(, -1,P, —-m,P, —n,P,)u,

+(Jy = 1,0, - myQ, —n,0;)u, + (K, —1,R, —myR, —n,R;)u;}do, =0,

in which A;, A», A3, w1, wo, w3 are arbitrary functions and the integrals are taken over the

surface So of the medium (M) and the domain bounded by it. If we apply GREEN’S
formula then the relation that we wrote becomes the following one:

.”.J(XOA’I +YoAy + Zo Ay + Lopty + Moy + Ny )dx,dy,dz,
- .”(Fo)“l +Goly + HoAy + Lopy + o, + Kouy)do,

A A A A A A

+”‘I A—+A —+A—+B—-+B,—>+B,—>
0x, ay Tz 0x, ay © 0z

0 0 0 0 0 0

A A A

C,—>+C,—2>+C,—= |dx,dy,dz,
ox, ay, 0z,

d d d d d
.[J-.[ ALll l +Pf; ALll + Ql ALll + Q2 ‘le + Q,; ‘le
Vo 02, ox, ay, "0z,

d d d

R, “ R, “ ) R, e dx,dy,dz,
ox, ay, "0z,

d d d d d d
_”.[ c, 2 +Czay +0, 2 +BlaZ +BzaZ +B3aZJuldx0dy0dz0

Xo Yo <o Xo Yo <o

d d d d 0 0
—.U.[ A, < + A, < + A < +C, al +C, al +C, al u,dx,dy,dz,
ox, ay, 9z, 0x, ay, "0z,

9 9 9 a a ad
—.U.[ B, Gl B, Ty B, Gl A Y A, Y A, J usdx,dy,dz, =0.
ox, ay, 9z, ox, ay, S0z, )

We seek the transform of this latter relation when one takes the functions x, y, z of xo,
Yo, 2o for the new variables. If one lets @ denote an arbitrary function of xo, yo, zo that
becomes a function of x, y, z then the elementary formulas for the change of variables are:

dg _dg ox  op ay op o
ox, Ox dx, OJy dx, 0z axo
o _dg ax g dy | ag oz
dy, ox dy, Iy dy, 9z Ay,
dg._dg ox g oy  op oz
0z, Ox dz, dy dz, 0z 6Z0
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Apply these formulas to the functions A, A, A3, w1, to, 3. With S always denoting
the surface of the medium (M) that corresponds to the surface Sy of (M), we further
denote the projections onto Ox, Oy, Oz of the external force and external moment applied
to the point M by X, Y, Z, L, M, N, which are referred to the unit of volume of the
deformed medium (M), and the projection onto Ox, Oy, Oz of the effort and the moment
of deformation that are exerted at the point M of S by F, G, H, I, J, K referred to the unit
of area on §. Finally, introduce the eighteen new auxiliary functions p.x, pyx, Pzx, Pxys Pyys
Pzy» Pxz» Pyz> Dzzs Gxxs Gy Gaxs Gxys Qyys Gays Gz Gyzr Gz bY the formulas:

Apxx=Alax+Azax+Agax, Aqxx=Plax+Pzax+Pgax,
0x, ay, 0z, 0x, ay, 0z,

Ap = AL A, DA g = P, Y
Xo 0 0 0x, 0 9z,
0z 0z 0z 0z 0z 0z

Ap. =A + A + A
pzx laxO 2 ayo 3 aZO

and the analogous ones that are obtained by replacing:

Al, AZ, A3, pxx; pyx; pzx; Pl, PZ, P3, QXx; ny; qu

with:

Bl, BZ, B3, pxy; pyy; pzz; Ql, QZ, Q3, qu; ny; qu;
and then by:

Cl, CZ, C3,pxz; pyz; pzz; Rl, R2a R3a QXZJ quJ qzzi
respectively.

We obtain the transformed relation:

”_[(XAI +YA, + ZA, + Lu, + Mu, + Nu,)dxdydz
—“.(F)L1 +GA, + HA, + Ty, + Ju, + Kuy)do

A, A, A A, A, A,
+ +p,. +p, +p., +p., +p,,
m(pxx ox Py FPa T P P P

d X Z

oA oA oA
+p.—+p,—+p, — |dxdydz
Coox oox Coox

au, ou, ou, i, i, i,
+ +q,, +q., +q., +q., +q.,,
”J.(q” ox D dy 7 0z Lo "ax T dy 1 0z

0 0 0
+q. Hs +q, Ay q. Hs dxdydz
C0x oox ©0x
_.”-J.{(p)z - pz_\’)ﬂl + (pzx - pxz)ll’tZ + (pxy - p)x)ﬂB%Xdde = 0,

in which the integrals are taken over the surface S of the medium (M), and the domain
bounded by it, with d o designating the area element of S.
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Once more, apply GREEN’S formula to the terms that refer to the derivatives of
A, Ao, A, s, o, 1z With respect to x, y, z, and let [, m, n denote the direction cosines of
the exterior normal to the surface S with respect to the fixed axes. Since A, A, 43,
U1, W, us are arbitrary, they become:

F=Ip_ + mp,. +np_, I=Ilg + mq, +nq.,
G= lpxy +mp  +np_, J = quy +mq, +nq.,
H=Ip, + mp,. +np_, K=Ig, + mq,. +nq._,
0 op,., 9

Puc | Por P _x -0,

0x ay 0z

Py + Py + Py -Y =0,

0x ay 0z

0 o, 0

pxz_l_ p)»_l_ pzz_Z=0,

0x ay 0z

0 dq,., 0
q + q) + qzx + pyz _ pzy - L= 0,
0x ay 0z

dg.. 0dg.. 0qg..
T + Ty + o +p,-p.-M=0,
0x ay 0z '

ag. 9q,
CE Dy + M=, Py —Py—N=0.
0x ay 0z

The significance of the eighteen new auxiliary functions py, ..., Gxr, ... results
immediately from the relations that we just found. Indeed, it is clear that the coefficients
Dxx> Pxy» Dxz Of 1 1n the expressions for F', G, H represent the projections onto Ox, Oy, Oz of
the effort that is exerted at the point M on the surface whose exterior normal is parallel to
Ox, and that the coefficients g.., ¢, g of [ in the expressions for I, J, K are the
projections onto Ox, Oy, Oz of the moment of deformation at M relative to the same
surface. The coefficients of m and of n give rise to an analogous interpretation in regard
to surfaces whose interior normals are parallel to Oy and Oz.

The auxiliary functions that we just introduced and the equations that relate them do
not appear to have been envisioned in a form that was that general up till now; to our
knowledge, they have been considered only in the particular case in which the nine
quantities g, ..., g.; are null, and the first work to treat that question seems to be that of
VOIGT (V).

' WALDEMAR VOIGT. — Theoretische Studien iiber die Elasticititsverhdlisse der Krystalle, 1, 11,
Abhandlungen der koniglichen Gesellschaft der Wissenschaften zu Gottingen, Bd. 34, 1887. The first
section, entitled: Ableitung der Grundgleichungen aus der Annahme mit Polaritit begabter Molekiile, has
49 pages (3-52), the second one, entitled: Untersuchung des elastische Verhaltens eines Cylinders aus
krystallinscher Substanz, auf dessen Mantelfliiche keine Krdfte wirken, wenn in seinem Innern wirkenden
Spannungen lings der Cylinderaxe constant sind, is 48 pages (53-100). One may likewise consult the
work of VOIGT: L’Etat actuel de nos connaissances sur 1’élasticité des cristaux (Report presented at the
International Congress of Physics convened in Paris in 1900, T. I, pp. 277-347), in which he alludes to
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In conclusion, we observe that if one performs a change of variables in the six
equations that involve X, Y, Z, F, G, H in such a fashion as to introduce the original
variables xo, yo, zo then one immediately finds equations whose first three constitute the
generalization of the equations that were established by BOUSSINESQ.

54. External virtual work. Theorem analogous to those of Varignon and Saint-
Guilhem. Remarks on the auxiliary functions that were introduced in the preceding
section. —We give the name of external virtual work on the deformed medium (M) for an
arbitrary virtual deformation, to the expression:

6T, = -HSO (F)0'x+G,0'y + H\0'z+ 1,61 +J,6J' + K. 0K )d o,

+ ms (XX +Y. 8y +Z,87+L.0 + M. + N.,OK "dx,dy,dz, .

We refer to the notations of sec. 50, and let J, &J, JK denote the projections onto the
fixed axes of the segment whose projections onto Mx',My',Mz' are &l',6J',0K’, in such

a way that one has, for example:
-0l =a"6a' + B'OB +y'0y' = —(a'da" + BOB" +yOy"),

upon always supposing that the axes in question have the same orientation.
This being the case, suppose as in sec. 53 that one gives the arbitrary functions A,
A2, A3, i, o, us the significance defined from the formulas:

M=, =0y, =&, =0, w=23a), us=70.

We then see that the previously-obtained relations between the auxiliary functions that
we introduced serves only to express the following condition:
When any of the virtual displacements in sec. 50 are given to the deformed medium

the external virtual work Jd7. is given, either by the relation:

d0x d0x 00x a0y a0y a0y
071, =- - tpPy—+P—+DPy——*tDPy—tD,
‘ HJ. (p” o D dy P 0z Po "o TP dy P 0z

0 0
+D, 90 +p,. % +p, % dxdydz
- Ox )Y 0z

Gt —

_.”-J- ﬁ_l_ G_(SI_I_q a0l 2oJ 2oJ 2oJ
qu ax qu ay X aZ Xy ax yy ay aZ

POISSON, Mém. de I’Acad., T. XVIII, pp. 3, 1842 (see pp. 289). Also consult LARMOR, On the
propagation of a disturbance in a gyrostatically loaded medium (Proc. Lond. Math. Soc., Nov., 1891);
LOVE, Treatise on the Mathematical Theory of Elasticity (Camb. University Press, 1" ed., 1892, 2" ed.,
1906); COMBEBIAC, Sur les équations générales de l’élasticité, Bull. De la Soc. Math. De France, T.
XXX, pp. 108-110, and pp. 242-247, 1902.
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N d0K N d0K
CIxz ax q Yz ay

+H[[[{p,. = PO+ (., - )V +(p, - p,)OK)dxdydz,

+q, 90K dedydz
-0z

where the integrals are taken over the deformed medium, or by the relation:

5T = _.UJ- A 6§x+A2 86x+& 00x +B, a0y +B, 90y +B, a0y
0x, ay, © 0z, 9%, a9y, © 0z,

+C, 00 +C, 002 +C, 90 dx,dy,dz,
ox, ay, "0z,

a4l a4l a0l adJ a0/ aoJ
~[[[lBS=+P =+ P =+0,"—+0,"—+0,
ox, ay, a7, ox, ay, 0z,
K 0K d0K
+R, 90 +R, I +R, dx,dy,dz,
ay, 0z,

9 9 9
+[[[lc W oo, D, W g 9% g 9 % sy dz,
0x, ay, "0z, 0x, dy, 0z,

d d d d d d
+”‘I A < + A, < + A < -C, al -C, al -C, al dx,dy,dz,
ox, ay, "0z, ox, ay, "0z,

a a 9 9 9
+[[]| 5, O B, B AW u D4 Y dskax dy,dz,
ox, ay, "0z, ox, ay, "0z,

in which the integrals are taken over the undeformed medium, because the formula we
gave above:

6T, =-| jso (FJo'x+G.0'y + H\0'z+ 1,61 +J.8J' + K.6Kd o,

+ ms (X[ OX+Y/ 6y +Z 87 +L.01" + M8 + N.OK "Ydx,dy,dz, .
to serve as the definition of external virtual work may also be written:
6T, =-| jso (F,0x+G,0y + H,0z+ 1,01 +J,0] + K,0K)do,

+ ”J;O (X, x+Y, 0y +Z,0" +L,0l + M ;6] + N,6K)dx,dy,dz,,
by virtue of the significance of Xy, Yo, ..., No, Fo, Go, ..., Ko, and likewise:

67, = —”S(Féx +G8y+HOz+181 +J8J + KOK)do,
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+ ”J.S (XOx+ YOy + Z0' +LAl + MJ + NOK )dx,dy,dz,

by virtue of the significance of X, Y, ..., N, F, G, ..., K.
Start with the formula:

.UJ.S oWdx,dy,dz, + 67, =0,

which is applied to an arbitrary portion of a medium that is bounded by a surface Sp.
Since oW must be identically null, by virtue of the invariance of W under the group of
Euclidean displacements with the variations given by formulas (51), namely:

o = (a1 + wz — wsy)dt,
oy = (a2 + w3z — any)dt,
& = (az + wiz — wy)dt,
and dl, &/, JK by:
ol = w o, o = wdr, oK= w0,

and from this, and the expressions for §7. on which we must insist (1), we conclude that
one has:

HSO F,do, —ms X dx,dy,dz, =0,
(I, +H,y-G,2)do, - ||| (L, +Z,y -Y,z)dx,dy,dz, =0,
So s,

and four analogous equations. These six formulas are easily deduced from the ones that
one ordinarily writes by means of the principle of solidification.

One may imagine that the frontier S is variable in these formulas.

The auxiliary functions that were introduced in the preceding paragraphs are not the
only ones that may be envisioned; if we confine ourselves to their consideration then we
simply add a few obvious remarks.

By definition, we have introduced two systems of efforts and moments of
deformation relative to a point M of the deformed medium. The first are the ones that are
exerted on surfaces that have their normal parallel to one of the fixed axes Ox, Oy, Oz
before deformation. The second are the ones that are exerted on surfaces that have their
normal parallel to one of the same fixed axes Ox, Oy, Oz.

The formulas that we have indicated give the latter elements by means of the former;
however, by an immediate solution, which we shall not stop to perform, one obtains,
conversely, the former elements in terms of the latter.

Now suppose that we have introduced the function W. The former efforts and
moments of deformation have the expressions we already gave, and one immediately
deduces their expressions in terms of the latter from this. Nevertheless, in these
calculations one may specify the functions that one must introduce according to the

" The passage from elements referred to the unit of volume of the undeformed medium and area of the
frontier Sy to the elements referred to unit of volume for the deformed medium and the area of the frontier S
sufficiently immediate that it suffices to confine ourselves to the former as we have done, for example.
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nature of the problem, and which will be, for example, x, y, z or x',y',z', and three
parameters (') A, A2, A3 by means of which one expresses a,a’,---,y".

If one introduces x, y, z, A1, A2, 43, and if one continues to let W denote the function
that depends on xo, yo, 20, the first derivatives of x, y, z with respect to xo, yo, zo on
A1, Ao, A3, and their first derivatives with respect to xo, Yo, zo, and is obtained by replacing
the different quantities &, n;, &, pi, ¢i, i in the function W(xo, yo, 20, & % &, Pi» qi> Ti»)
with their values as given by formulas (43) and (44), then one will have:

pe D g W, W
P P P

ox, ay, 9z,

Bl= a‘g/ ’ Bz= a‘g/ ’ B3= a‘g/ )
PR PEAS 9 Y

ox, ay, 0z,
¢ = -2 -2,
97 9% 9o

ox, ay, az,
)4 W )
e T an T ek
9P, 90; 90;

55. Notion of energy of deformation. Theorem that leads to that of Clapeyron
as a particular case. - Envision the two states, (My) and (M) of the deformable medium
bounded by the surfaces (So) and (S), and consider an arbitrary sequence of states that
start with (My) and end with (M). To that end, it suffices to consider functions x, y, z,
a,a',-,y" of xo, yo, z0, and one variable & that reduce to xo, Yo, 20, @, s"*Ve>
respectively, when 4 is zero, and reduce to the values x, y, z, a,a’,--+,y", respectively, for
non-zero h relative to (M).

If we make the parameter £ vary in a continuous fashion from O to 4 then we obtain a
continuous deformation that permits us to pass from the state (Mo) to the state (M). For
this continuous deformation, consider the total work performed by the forces and external
moments that are applied to the different volume elements of the medium and by the
efforts and moments of deformation that are applied to the surface elements of the
frontier. To obtain this total work, it suffices to integrate the differential so obtained

from O to h, starting with one of the expressions for d7¢ in the preceding section and

substituting the partial differentials that correspond to the increase dh in h for the
variations of x, y, z, a,a’,-+-,7"; the formula:

! For such auxiliary functions A;, A4, 43, one may take, for example, the components of the rotation that
makes the axes Ox, Oy, Oz parallel to Mx', My', Mz’ respectively.
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oT, =-| HS SWax,dy,dz,

gives the expression — .[ J.J-S %dxodyodzo for the value of §7c, and we obtain:

‘Lh (.mso%dxodyodza jdh - 5, Wi = Wo)dxydy,dz,

for the total work. The work in question is independent of the intermediary states and
depends only on the extreme states (My) and (M).

This leads us to introduce the notion of energy of deformation, which must be
distinguished from that of the action of deformation that we previously envisioned. We
say that — W is the density of the energy of deformation, referred to the unit of volume of
the undeformed medium.

The proposition that we must encounter, which determines the fotal work that is
performed by the external forces and moments, as well as the efforts and moments of
deformation that are applied to the frontier, gives CLAPEYRON’S theorem (') when we
consider an infinitely small deformation and specify the medium. Indeed, first introduce
simply the hypothesis — and we refer to sec. 58 for the more general form — that Wis a
simple function of ¢, &, &, 41, A2, A3. We may then envision the formulas:

de, ae, T 0, A,

_w
Poa,]

_aw
oA

[1]
[1]

3

as defining a change of variables that replaces the letters &, &, &, A1, A2, A3 with the
letters i, Q,, Q3, E;, 2, E3. By virtue of this change of variables, W becomes a
function W, of Ql, Qz, 93, El, Ez, 53.

Having said this, we pass to infinitely small deformations and put ourselves into the
situation envisioned in sec. 31, pp. 74-76, of our Premier mémoire sur la théorie de

I’élasticité; W and W' become quadratic forms W, of ey, ez, e3, g1, &2, g3, and W, of MV,
Mo, N3, Th, Tr, Ts; the latter is, up to a factor of V4, what one calls the adjoint form to W,.

When this is of issue, and in the case of infinitely small deformations, one obtains the
following expression for the total work:

.[ ” W,dx,dy,dz,.

" LAME seems to have been credited with making CLAPEYRON’S theorem known in his Note to the
Comptes Rendus, T. XXXV, pp. 459-464, 1852, then in his Lecons sur la théorie mathématique de
élasticité des corps solides, (1" ed., 1852, 2™ ed., 1866); indeed, it was only in the 1 of February, 1858,
that the following note appeared: CLAPEYRON, Mémoire sur le travail des forces élastiques, dans un
corps solide déformé par U’action de forces exterieures, Comtes rendus, T. XLVI, pp. 208, 1858. Also
consult TODHUNTER and PEARSON, A History of the Theory of Elasticity, etc., secs., 1041 and 1067-
1070.
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To be more specific, if we suppose that we have ('):

A N 2 2_4 4 4
W,(e;.8,) =- 5"‘# (e, +e, +e3) _E(gl + 85 + 85 —4eye; —dese —4ee,),

then we have:

W Ty L[ NEENT A NG A N N+ N TR AT+ T
ACANERS 2 2u 2u 3A+2u U R
or:
| 1+£ |
WZ/(/\/’“I)=_E ﬁ(/\/] +N2+N3)2_;(N2N3+N3-/\/’1 +./\/’l./\/’2—’]]2_’]'22_7;2)

One sees that one has recovered the result of LAME precisely, if one remarks that the
total work of the external forces and efforts on the frontier obviously reduces to the
indicated expression in the case of infinitely small deformations.

56. Natural state of the deformable medium. — In the preceding we started with a
natural state of a deformable medium and then we were given a state we called
“deformed.” We indicated the formulas that permit us to calculate external force and the
analogous elements that are adjoined to the function W for the deformable medium and
represent the action of deformation at a point.

As before, let us stop for a moment on this notion of natural state.

Up till now, the latter is a state that has not been subjected to any deformation.
Imagine that the functions x, y, z, «,a’,-+-,y" that define the deformed state depend on

one parameter, and that one recovers the natural state for a particular value of this
parameter. The latter then seems to us to be a special case of a deformed state, and we
are led to attempt to apply the notions relating to the latter to it.

Without changing the values of the elements that are defined by the formulas of sec.
52, one may replace the function W with this function augmented by an arbitrary definite
function of xo, yo, 20, and, if one is inspired by the idea of action that we associate to the
passage from the natural state (Mj) to the deformed state (M) then one may, if one
prefers, suppose that the function of xo, yo, zo that is defined by the expression:

©0) ,,0) _(0) ) ) _.(0)
W(Xe,¥0:2058 51 5Si »Pi i 51 )

is identically null; however, the values obtained for the external force and the analogous
elements with regard to the natural state will not necessarily be null. We say that they
define the external force and the analogous elements relative to the natural state (1).

"E. and F. COSSERAT. — Premier mémoire sur la théorie de I’élasticité, pp. 77.
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In our way of speaking, the natural state presents itself as the initial state of a
sequence of deformed states, a state that we start with in order to study the deformation.
As aresult, one is led to demand that it is not possible to make one of the deformed states
play the role that we have the natural state play, and that this must be true in such a way
that the elements that we defined in sec. 52 (external force and moment, external effort
and moment of deformation), which were calculated for the other deformed states, have
the same values if one refers the first of these elements to the unit of volume of the
deformed medium and the second of these to the unit of area of the deformed surface.
This question may receive a response only if one introduces and specifies the notion of
the action that corresponds to the passage from one deformed state to another state.

The simplest hypothesis consists of assuming that this latter action is obtained by
subtracting the action that corresponds to the passage from the natural state (My) to the
first deformed state (M ") from the action that corresponds to the passage from the natural

state to the second deformed state (M). With regard to(M"),if we denote the quantities
that are analogous (%) to &, 7, &. pi» qi» i relative to (M) by &.,n/.c/, pl.q..r/, then we

are led to adopt the following expression for the action of the deformation relating to the
passage from the state(M") to the state (M):

(52) [ W 0305206156052y 1) = Wy s 20600161 1o ) Yegdyy 2,
which one may write, if A’is the value of A for (M) :
(53) I Wy oo Yos2055 570565 Py i) VA L dydygdlz,

in which we have let S’ denote the surface of (M ") that corresponds to Sy for (M), and
W, (X4, Y0>20-& 51 56> P;»q; »1;) denotes the expression:
! ! ! ! ! r 1
{W(x()ay() ) ’5,',77,' agiap,’aqi ,I’i) _W(x()ay() ) agi a77,' agi »Pi»q; a’ﬁ,)}m

Furthermore, from the remark made at the beginning of this paragraph, one may, if
one prefers, substitute the following expressions for (33):

(53) I W 0003020818 Pty r) VA dxydyydzg,

' We may then speak of the force, effort, etc., since we regard the natural state as the limit of a sequence of
states for which we know the force, effort, etc. Up till now, the force, effort, etc. were defined for us only
when there was a deformation capable of manifesting and measuring them.

0 0 0 0 0 0
* One must remark that &'m'.¢'.p'.q'.r' are not analogous to & )”7,-( )’5',-( ),pi( ),qi( ),rl.( ’,because they
1 1 1 1 1 1

are not formed by means of the coordinatesx’,y’,z' of (M')in the same way that 51'(0)”7,-(0)’5;0)’

0 0 0
pl.( ),qi( ),rl.( ) are formed by means of xy, o, 2o-
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in which W'(x,,¥,,2,.&,,7,,S, P, -4, 1;) denotes the expression:
W(xo’yo’zo’gi 11565 Pi>4; ’ri)m‘

If one remarks that one has, for example:

aW/(x()ay() aZ() ,g,»,"',”,») — au/(-x()ay() aZ() ,g,»,"',’”,»)
&, &,

[A']

9

then it is clear that applying formulas that are analogous to those of sec. 52 to expressions
(53) or (53") and starting with(M ") as the natural state, but while supposing that (M ") is
referred to the system of coordinates Xy, Yo, z0, and assuming that the formulas of sec. 52
are modified as a consequence, will give the same values for the exterior force and
moment relative to the state (M) referred to the unit of volume of (M), as well as the same
values for the effort and the moment of deformation referred to the unit of area for (S).
Therefore we may consider (M) to be a deformed state for which(M ")is a natural

state, provided that the function W associated with the state (M) is actually (1) W, or W'.

Conforming to these indications, suppose, to fix ideas, that the external force and
moment are given by means of simple functions of xo, yo, zo and elements that fix the
position of the triad Mx'y'z'. Suppose, moreover, that the natural state is given. We may
consider the equations of sec. 52 relating to the external force and moment to be partial
differential equations in the unknowns x, y, z and the three parameters 4;, A», A3 by means
of which one may express a,a',---,y". The expressions &, i, &, pi, i, i are then
dx dy azjﬂjz&aﬂq a4, 04,
ap, " op, ap, 0.9, op,
Z0) that one calculates by means of formulas (43) and (44).

Suppose that X;.Y,,Z,,L,,M,N;,or, what amounts to the same thing, X, Yo, Zj,

functions of — (always setting 01 = xo, 02 = Yo, 03 =

Lo, My, Ny are given functions of xo, yo, 20, X, ¥, 2, A1, A2, A3 . The expression W is, after
substituting for the values of &, n, &, pi, gi, ri by means of formulas (43) and (44), a

.. ) oA A,
definite function of xo, yo, zo, ﬂ,---,ﬁ,)ﬁ Ay Ay, —

Xo 0z, 0x, azo
denote by W, and the equations of the problem may be written:

" As we said at the beginning of this section, this permits us to generalize the notion of natural state that we
first introduced. Instead of making this word correspond to the idea of a particular state, we may, in a more
general fashion, make it correspond to the idea of an arbitrary state, starting from which we may study the
deformation. The fact that we introduced Xy, Yo, 2o at the beginning of the theory seems to make (M) play a
particular role; however, one must not consider x, Yy, zo as anything but the coordinates that serve to define
the different media, and not only (M;). One has chosen these coordinates in a particular fashion, and in
relation to a particular medium, in order that one must, as a result, pay attention to (M) in the context of
infinitely small deformations.
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0d 3W+a 3W+a ow
axoaax ayoaax aZO aﬂ

0°

ox, ay, 9z,
a 0w N a 0w N a oW
0xy 5 0y 9y, 5 9y 0zy 5 9y

0°

ox, ay, 9z,
g oW g oW g ow

+ + =Z,,
X, 4 9z 9y, 3 9z 09z, 3 0z

0x, ay, 9z,
g oW o9 oW o oW oW

— +— +— - =L,
0, a% Yy a% 9z, a% A
0x, ay, 9z,
iaW_l_iaW_l_iaW_aW_/\/{O
0, a% Yy a% 9z, a% 94, ,
ox, ay, 0z,
dg ow a oW g oW oW
=N0,

0, a% A a% 9z, a% 92,
0, Yy 07

in which Ly, My, Ny are functions of xo, Yo, 20, X, ¥, 2, A1, A2, A3 that result from the

definitions of sec. 53.
It results directly from the formulas of the preceding paragraphs that a more

immediate way of defining Xo, Yo, Zo, Lo, Mo, No may be summarized in the relation:

6 [[[Wax,dydz, + 0T, =0,
i.e., in:

8 [[[ waxydy,dz, = [[ (Fyox+Gydy + Hydz+ T,0h + J,0%, + K,04)do
~[[] (Xo0x+Y,0y + 2,02+ L,0%, + Mo, + Ny 04 dxdy,dz,

57. Notions of hidden triad and hidden W. — In the study of deformable media, as
in the study of deformable lines and surfaces, it is natural to pay particular attention to the
pointlike media that are described by the deformable media. This amounts to envisioning
x, v, z separately and considering a,a’,---,y" as simply auxiliary functions. This is what
we likewise express by imagining that one ignores the existence of the triads that
determine the deformable medium, and that one knows only the vertices of those triads.
If we adopt that viewpoint in order to envision the partial differential equations that one
is led to in this case then we may introduce the notion of hidden triad, and we are led to a
resulting classification of the diverse circumstances that may be produced by the

n

elimination thea,a’,-+-,7".
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Therefore, a primary study that presents itself is that of the reductions that relate to
the elimination of thea,a',---,y". Likewise, in the corresponding particular cases in

which the attention is directed almost exclusively to the pointlike media that are
described by the deformed medium (M) one may sometimes abstract from (M), and, as a
result, from the deformation that permits us to pass from (M) to (M).

As we already said for the deformable line and surface, the triad may be employed in
another fashion. We may make particular hypotheses on it and the medium (M); all of
this amounts to envisioning particular deformations of the free deformable line. If the
relations that we impose are simple relations between &, 7, &, pi, qi, 1i, as will be the
case in the applications that we shall study, we may account for these relations in the
calculation of W and deduce more particular functions from W. The interesting question
that this poses is that of introducing these particular forms simply, and to consider the
general W that serves as the point of departure as being hidden, in some sense. We thus
have a theory that will be specific to the particular deformations brought to light by the
given relations between &, n;, &, pi, qi, 1i.

We confirm that by means of the theory of free deformable media one may therefore
combine the particular cases and provide a common origin to the equations that are the
result of special theories that one encounters in physics )

In the particular cases, one sometimes finds oneself in the proper circumstances to
avoid the consideration of these deformations; in reality, they must sometimes be
completed. This is what one may do in practical applications when one envisions
infinitely small deformations.

Take the case in which the external force and moment refer only to the first
derivatives of the unknowns x, y, z and A, A,, A3; the second derivatives of these
unknowns will be introduced into these partial differential equations only for W;
however, the derivatives of x, y, z figure only in &, #;, &, and those of 4;, A2, A3 show up
only in p;, ¢;, r;. One therefore sees that if W depends only on &, #;, &, or only on p;, g;,
r;, then there will be a reduction in the order of the derivatives that enter into the partial
differential equations. Here, we examine the first of these two cases, which corresponds
to the ordinary theory of elasticity for material media and to the theory of the various
ethereal media that are envisioned in the doctrine of luminous waves.

58. Case in which W depends only on x, yo, z0, &, 7;, &, and is independent of p;,
qi, . How one recovers the equations that relate to the deformable body of the
classical theory and to the media of hydrostatics. — Suppose that W depends only on
the quantities xo, yo, 20, &, Wi, &, and not on p;, g;, r;.. The equations of sec. 56, which
reduce to the following:

" All of our considerations heretofore may be applied just the same to material media as to various ethereal
media. We have declared the word matter to be invalid, and what we expose is, as we said to begin with, a
theory of action for extension and movement. To have a more complete idea of the notion of matter, we
shall explain later on how one must approach the latter from the concept of entropy according to the
profound viewpoint that LIPPMANN introduced into electricity.
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a ow a oW J oW ow

+ + =X,, —+£L,=0,
ax, aﬂ 9y, 0 0x  dz, aﬁ a4,
ox, ay, 9z,
0 8W+8 8W+8 ow _v, ﬂ_l_/\/{():(),
x, aal 9, aﬂ 0z, aal 04,
ox, ay, 9z,
0 8W+6 8W+8 ow v ﬂ+/\/'0=0,
ax, aﬁ 9, aﬁ 0z, aﬁ a4,
0x, ay, 9z,
. . ox 0z .
in which W depends only on xo, yo, 2o, a—,-'-,a—,il, A2, A3, we show that if one takes
Xo 2o

the simple case in which Xo, Yo, Zo, Lo, Mo, Ny are given functions (') of xo, Yo, z0, X, ¥, 2,
aa—x,-'-,aa—z,il, A2, A3 then the three equations may be solved for 4;, A2, A3, and one
Xo <o

finally obtains three partial differential equations that, from our hypotheses, refer to only
the xo, yo, z0, and to x, y, z, and their first and second derivatives.

First, envision the particular case in which the given functions Lo, Mo, Ny are null;
the same will be true for the corresponding values of the functions of one of the systems
(Ly,M,,N,), (Lo, Mo, No),(L, M, N). Tt results from this that the equations:

ow ow ow

. =Y . =Y, . = 0,
A, A, A,
amount to:
o, W oW g g9 p 2y
0 0 "0z, 0x, 9y, 0z,
A az+A2 0z VA, 0z o) 0x _c, 0x _c, 0x -0,
0x, ay, 0z, 0x, ay, 0z,
B g M g 0 g, W
9, 9y, "0z, 9, Yo 02,
i.€e.,
Pyz = Pzy» Pz = Pxz» DPxy = Dyx

whose interpretation is immediate.
Haing said this, observe that if one of the two positions (Mj) and (M) is assumed to be

given, and that if one deduces the functions £y, Mo, N from this, as in sec. 53, then in
the case in which these three functions are null one may arrive at this result accidentally,

" In order to simplify the exposition, and to indicate more easily what we are alluding to, we suppose that
Xo, Yo, Zo, In, My, N, do not refer to the derivatives of A;, 4,, A3.
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1.e., for a certain set of particular deformations; however, one may arrive at this result for
any deformation (M) since it is a consequence of the nature of the medium (M), i.e., of

the form of W.

Consider this latter case, which is particularly interesting; W is then a simple function
(1) of pi, 2, 3, and the six expressions €i, &, &, A1, A2, A3, which are defined by the

formulas (45).
The equations deduced from sec. 52 and 53 reduce to either:

aA/ ! ! ! !
Z(G_I+Qici/_riBt'/J=X(l)’ Fy =1,A +my A, +nyA;,
i \ 90;
aB[I ! ! ! ! ! ! !
Z A -pC =Y, Gy =1,B, + myB, +n,B;,
=\ an, |
acl ! ! ! ! ! ! !
Z a_l"' pB - q,A |=2,, H, =1,C, +mC, +n,C;,
i \ 90

AI,=§i6W+k6W+18W
de; a}/j IV
B=n, Wiy, W, M Gjk=1,2,3).
de; a}/j IV
, ow ow ow
Ci=¢ k +g;
de; 6}/! Y,
or to (2):
0A, 0A 0A
L 2y 3=X0, F, =1,A +myA, +n,A,,
ox, dy, 0z,
oB oB oB
! 2y—2=Y,, G, =1,B, + m,B, +n,B,,
ox, dy, 0z,
JoC, aC oC
Ly—2+—2=7, H,=1,C, + m,C, +n,C,,

in which one has:

A =Q +E +E ,
1 1aXO 1ay0 2 9z,

— 0x ox . Ox

A =&, +Q,—+E —,
0x, Y, 0z,

A =E aX+Elﬂ+§2 ﬂ,

? 0x, ay, ’ 0z,

" The triad is completely hidden; we may also conceive that we have a simple pointlike medium.

* Compare E. and F. COSSERAT. — Premier Mémoire sur la théorie de Iélasticité, pp. 45, 46, 65.
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0x, ay, 02,
B, =E, 9y +Q, — 9y +E KAl
Yox, 9y, 02,
B’;=E ay "'Elﬂ Q ﬂ
ox, 4y, 02,
C -0 9z g, 0z +E, 9z ,
ox, 4y, 02,
C, ==, 0z Q ﬁ :1ﬁ
ax, oy, 92,
c, -2, %5 % g %
ax, Ay, oz
in which we set Q. = ZW =, = ﬂ,to abbreviate notation, or we get (1):
£, ;
) p,. 9
pxx+ p) + pzx=X, F:lpxx+mpyx+l’lpzx,
ox ay 0z
.. op. Op..
Px} + p)} + pzy _ Y, G = lpxy +mpyy + npzy,
ox ay 0z
) ap,, 9
pxz + p), + pzz = Z, H: leZ +mpyz + npzz,
ox ay 0z

in which one has:

2 2 2
pu=l Qlﬂ +Qzﬂ +Qg£ +28, 24
A 0x, ay, "\ 0z,

and analogous formulas for p,, ...
which we shall recall in a moment.

0x ax —  ox
2 )
ayo azo

ax

0z, axo
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+ 28, 0x ox
axo 9,

A has the significance that we gave it in sec. 51,

As one sees, we recover the continuous deformable medium as it is treated in the

ordinary theory of elasticity.

A particularly interesting case is obtained by looking for a form for W that gives the

identities:

Pyz =0, Pyx:Oa Pxy =0,

ox
for any —,---
0x,

expression A, which is defined by the formulas (1):

One finds that W must be a simple function of xp, yo, 20, and the

" Compare E. and F. COSSERAT. — Premier Mémoire sur la théorie de I’élasticité, pp. 40, 44, 65.
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1+2e 73 72
_3(x,y.2) e |,

= , 7 1+2¢ e
9(x9,Y0520) ? ? :

V2 14 1+ 2e¢,

from which one may see, upon remarking that if one refers to the previous formulas (%)
that gave us p,., pyx, Pz, .. as a function of Ay, ... then one has:

ow ow ow

R
dx,  dy, 9z,

0A 0A oA

g Ox g
0x, Y, 0z,

and two analogous systems; since W is assumed to be a simple function of xo, yo, zo, and
A, one has, as a result:

B B _ oW

Pu=Py =P, = A

If we consider the particular case in which W depends only on A, and if we assume
that we are given X, Y, Z expressed as functions of x, y, z then the equations in question,
which are:

9 2 9

w_y ®_, p
ox ay 0z

G = mp, H = np,

upon setting p = Z—VAV,become those which serve as the basis for hydrostatics (). The

initial medium (M,) appears only by way of A, and one may replace the unknown A with
the unknown p that is related to it by the relation p = Z—VAV If the function W, which is

not given, is hidden then one has the preceding equations, in which p is an auxiliary
function whose significance is well known.

It will suffice for us to indicate that the case in which the functions Lo, My, N, are

non-null comprises the theory of all the ethereal media that have been considered for the
study of luminous waves from MACCULLAGH to LORD KELVIN, but here the theory
of these media is completely mechanical. We likewise mention that the most general

' Compare E. and F. COSSERAT. — Premier Mémoire sur la théorie de I’élasticité, pp. 23, 24.
* These formulas are actually the ones on page 47 of our Premier Mémoire sur la théorie de I’élasticité.

? Compare DUHEM. — Hydrodynamique, Elasticité, Acoustique.
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case, in which the trace of the derivatives of the action W with respect to the rotations p;,
gi, ri remains in the expression for the external moment leads in the most natural manner
to the notion of magnetic induction that was introduced by MAXWELL.

59. The rigid body. — We have considered the particular case in which W does not
depend on p;, ¢g;, ri, and different special cases of this case. One may arrive at the other
media that were considered, at least in part, by the authors, either by the study of
particular deformations, or by the study of new media that are defined by a theory of
constraints that profits from the results that we already acquired.

For example, start with the simple case, in which the triad is hidden, i.e., by
definition, it is a pointlike medium in which W is a function of xy, yo, 2o,

&1, &2, 8, 1, 125 )3-

1. We may imagine that one pays attention only to the deformations of the medium
for which one has:

51:6‘2:53:}/1:}/2:}/3:0_

In the definitions of forces, etc., it suffices to introduce these hypotheses, and, if the
forces are given, to introduce these six conditions. In the latter case, the habitual
problems, which correspond to the given of the function W, and to the general case in
which the g, y are non-null, may be posed only for particular givens.

If we suppose only that the function Wy that is obtained by taking & =& =a=n=n
=y =01in W(p1, o2, €1, ...) 1s given, that one does not know the values of the derivatives
of W with respect to &, &, ...,y3 for & = & =...= 5 = 0, so that W is hidden, then we see
that p,,, ..., p.., for example, become six auxiliary functions that one must adjoin to x, y,
z, in such a way that, for the case in which the forces that act on the volume elements are
given, we have nine partial differential equations in nine unknowns in the case, to which
one must adjoin accessory conditions.

Now we remark that one knows how to integrate the system:

51:6‘2:53:}/1:}/2:}/3:0_

Since the deformation is supposed continuous, the integral corresponds to a
displacement of the set of the medium; it thus remains for us to determine the six
constants of integration and the auxiliary functions py, ...

If the forces and efforts that act on the medium are given, and we suppose that X, ...
are known as functions of x, y, z then the six equations of sec. 54, with the simplifications
implied for the form of W, when applied to the entire body, determine the six integration
constants. To complete the process, what remains is for us to ultimately determine py,, ...

If we leave aside the problem of this ultimate determination, then one sees that we
recover the habitual problems of the mechanics of rigid bodies, in which one might
ordinarily suppose that the hidden function W depends only on A.

2. We may imagine that we seek to define a medium whose definition already takes
the conditions:
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a=a==n=n=5=0
into account, sui generis.
In order to define the new medium, while thinking along the same lines as before, we
further define F,---,N, by the identity:

.ULO OoWdx,dy,dz, = J.J-So (Fyox+--+K,0K"do,
- HL (X 0%+ + N,OK dx,dy,dz,.

However, this identity must no longer hold, by virtue of the fact that & = ... = 3 =0.
In other words, we envision a medium in which the theory must result from the a
posteriori addition of the conditions & = ... = )3 = 0 to the knowledge of a function
W(xo, yo, 20, &1, &,..., 3) and six auxiliary functions w,..., t of xo, Yo, 20, by means of the
identity:

”LO (OW + u,e, + U, &, + -+ . y,)dx,dy,dz, = ”SO (F,6%+--)do,
_.ULO(X(;§')C+...)dxodyodzo,

which amounts to setting & = ... = 3 = 0 in the general theory that preceded, in which
one has replaced W with W, = W+ w1 + ... + ts&s .

As one sees, we come down to the theory of elastic media that correspond to the
function W of xo, Yo, 20, €1, &,..., ¥3 when one restricts oneself to the study of deformations
that correspond to & = ... = y3 = 0. Therefore, if we consider the case of a hidden W
then if we suppose that we known simply the value W(xo, yo, z0) that W and W, take
simultaneously when ¢ = ... = 3 = 0 then we recover the habitual theory of the rigid
body.

Observe that if we account for the conditions & = ... =y =0 in W a priori by a
change of auxiliary functions then we are led to replace W with we + ... + ts&; in the
calculations that relate to the general medium, and we likewise find formulas that come
down to the study of an elastic medium in which we are confined to studying
deformations that correspond to & = ... = 3 = 0. Upon supposing that u,..., s are
unknown, we once more come down to theory that comprises the habitual theory of the
rigid body. From this latter viewpoint, we return to the exposition that one may make
about the ideas of LAGRANGE. In particular, we may observe that in the case in which
Xo, Yo, Zp are given as the partial derivatives with respect to x, y, z of a function @ of xj,
Yo, 20, X, ¥, z the equations in which Xy, Yy, Zy figure are none other than the equations that
one is led to when one seeks to determine the extremum of the integral:

.UJ. @dx,dy,dz,
given the conditions:
51=52=g3=}/1=}/2=}/3=0_
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3. We discuss a third procedure (') for constituting a medium for which the theory
always leads to the same equations, and which will be a limiting case of the original
theory. This procedure agrees with the first one, and it may also be applied to the cases
of the deformable line and surface.

Imagine that the W that serves to define the original medium is variable, and, to fix
ideas, suppose that the values of ¢, ... , 3 are developable in a MACLAURIN series in a
neighborhood of zero by the formula:

W=W + W+ ...+ Wi+...,

in which W; represents the set of terms of the /™ degree. Assume that the coefficients of
W, (which may depend on xy, yo, z0) increase indefinitely in their variation. If we want W
to conserve a finite value then we must suppose that &, ... , y3 tend towards zero. In
other words, we may then consider only deformations that satisfy &, = ... = =0. In
other words, the body that we approach in the limit may take only displacements of the

set. We may suppose that one makes the derivatives Z—W, , which approach limits
81
when W varies in a manner we shall describe, likewise vary as a consequence of a studied
deformation for this medium.
To explain this in a more precise fashion, imagine that the coefficients of Wi, W, ...
depend on one parameter 4, in such a way that when /4 tends towards zero the coefficients
of W, increase indefinitely. To fix ideas, suppose that the latter coefficients are linear

with respect to Z Likewise, imagine that x, y, z, which define the deformation in

question, vary with 4 in such a way that ¢, ... tend to zero. In addition, we suppose that
&1, ... are infinitely small of first order with respect to h; for example, &, ...might be
developed in powers of 4, and the first terms of that development are the ones in 4. With
" 0 ow e .
these conditions, W tends to zero, and a—,-~-,a— tend to certain limits (which may be
& 73
functions of xo, yo, z0). Therefore if we consider the equations of sec. 52 that serve to
define external force and moment then we are finally led to formulas that permit us to
define them, and which are none other than equations of our point of departure, in which
the notion of the function W has disappeared, and in which six auxiliary functions

F,.G,,H;,1,,J,.K, figure.

60. Deformable media in motion. — The theory of motion for the deformable line
and that of the motion of the deformable surface present themselves very naturally as
special cases of the theory of the deformable surface and that of the deformable medium.
To see this, it suffices to give one of the parameters p; of the surface or medium the
significance of time. As we will not envision the statics of media of dimension greater
than three here, we must expose the theory of motion of a deformable medium directly in

' Compare THOMSON and TAIT. — Treatise, vol. 1., Part. I, pp. 271, starting with the 11" line down.
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what follows; however, we nevertheless give it a form that is entirely analogous to the

one that we indicated for the dynamics of deformable line and the deformable surface.
Consider a space (M) that is described by a point M, whose coordinates are xy, Yo, 2o

with respect to the three fixed rectangular axes Ox, Oy, Oz, and adjoin a trirectangular

triad to each point M, of the space (My) whose axes M ,x,,M,y,,M,z, have the direction
cosines &,y By > BosBos Vo Vo s Vo With respect to the axes Ox, Oy, Oz, respectively,
and which are functions of the independent variables xo, yo, zo.

The continuous three-dimensional set of such triads M x; y,z, may be considered as
the position at a definite instant 7 of a deformable medium that is defined in the following
fashion:

Give the point M, a displacement MyM, which is a function of time ¢ and the position
of the point My, and is null for # = #,. Let x, y, z be the coordinates of the point M, which
we consider to be functions of xo, yo, z0, #. In addition, endow the triad M ,x; y,z, with a

rotation that makes its axes finally agree with those of a triad Mx'y'z" that we adjoin to the
point M. We define that rotation by giving the direction cosinesa,a',a”;
B.B.8" v,y,y" of the axes Mx',My',Mz' with respect to the fixed axes Ox, Oy, Oz.
Like x, y, z, these cosines will be functions of x, yo, 2o, .

The continuous three-dimensional set of triads Mx'y'z’, for a given value of time ¢,
will be what we call the deformed state of the deformable medium considered at the
instant 7. The continuous four-dimensional set of triads Mx'y'z" that is obtained by
making ¢ vary will be the trajectory of the deformed state of the deformable medium.

For ease of writing and notation in the sequel, we sometimes introduce, as we already
did, the letters pi, 02, 03, instead of xo, yo, z0. We continue to denote the components of
the velocity of the origin M, of the axes M x,,M,y,,M,z, along these axes by

EQ 0 ,c, when p; alone varies, and the projections of the instantaneous rotation,

relative to the parameter 0, of the triad M x,y,z, on these same axes by p”,q”,r .

We denote the analogous expressions for the triad Mx'y'z" by &, n;, &, and p;, gi, ri, when
one refers them, like the triad M x; y, z, ,to the fixed axes Oxyz.

When time ¢ varies, and the motion of the triad Mx'y'z" is referred to the fixed triad
Oxyz then the origin M has a velocity whose components along the axes Mx',My' ,Mz'

will be designated by & », £ and the instantaneous rotation of the triad Mx'y’z' will be

defined by the components p, g, r.
The elements that must introduce are calculated as in sec. 49; first, one has the
formulas:

ox 0 y 02 J d
S =«a ra 2 ta , pi=2y—/j=—2/j—y,
9p; 9p; 9p; 9p; 9p;
ox ' ay " 0z 8}/ Jo
54 = + + , 55 =y oa——=- e
CY m=p P, & P, & P, 55 qa-2 P, "op,
x 9 , 0z da 9
e =) B—=- 9
9p; 9P, 9p; 9p; 90,
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to which we adjoin the following:

0x , dy » 02 ap ay
=a—+a —+a —, = — = —,

J ot ot ot P 2}’ ot Z/j ot

, ox , dy » 02 , ay Ja
54 =f—+p =+ —, 55 =>a—=- —_—,
(54 nﬁat/jatﬁat (55) qzat iy
ox /ay //aZ Ja 6/3’
=y—+y —+y —, r= — ==y a—,

° yat 4 ot 4 ot Z/j ot ot

if one now introduces the distinction between the notations for the derivatives with
respect to time depending on whether one takes xo, yo, zo, f Or X, y, Z, t for the independent
variables.

Suppose that one endows each of the triads of the trajectory of the deformed state
with an infinitely small displacement that varies in a continuous fashion with these triads.
With the same notations as in sec. 50, we have:

(56) oa = BOK' - ydl',

(57) Ox=0+78] =y OK', Oy=0'+xK —70', 87=0 +y' ol —xdJ,

(5§i=;7,.<5K’—gi<5.]'+@+qié'z—n(5'y, 5Pi=ﬂ+%5K/—’3‘ﬂ/’
9P, 9p;
(58) n, = giél'—giéK'+?+ rdx-p.oz, (59) &g, =Zi+riél'— p,OK’,
Si =§i§-]/_77iéll+%+ piél))_Qié'/x’ or, = 90K + pié‘]/_Qiéll’
R &, =S 1 0K -,
t

(58" n, = giél'—giéK'+%+ rdx-p.oz, (59 &g, =%+m§l'— p,OK’,
t

c, = §iéJ’—niéI’+%+ 8% —q.0%, o = agK +p &) —qol'
t t

61. Euclidean action of deformation and motion for a deformable medium in
motion. — Consider a function W of two infinitely close positions of the triad Mx'y'z’, ie.,

a function of xo, yo, 20, t, and of x, y, z,a,a',-+-,7", and their first derivatives with respect
y y 4 p

to xo, Yo, 20, t. We propose to determine the form that W must take in order for the
quadruple integral:

”J.[deodyodzodt,
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when taken over an arbitrary portion of space (My), and the time interval between two
instants #; and 7, to have a null variation when one subjects the set of all triads along what
we are calling the trajectory of the deformable medium — taken its deformed state — to the
same arbitrary infinitesimal transformation of the group of euclidean displacements.

By definition, this amounts to determining W in such a fashion that one has:

W=0

when, on the one hand, the origin M of the triad Mx'y'z" is subjected to an infinitely small
displacement whose projections dx, dy, ¢z on the axes Ox, Oy, Oz are:

ox =(a, + 0,2 —w,y)ot,
(60) Oy =(a, + w;x —w,2)0t,
0z =(a; + W,y —w,x)ot,

in which a1, a», as, @, a», @ are six arbitrary constants, and J is an infinitely small
quantity that is independent of xo, yo, zo, ¢, and when, on the other hand, this triad Mx'y'z’
is subjected to an infinitely small rotation whose components along the Ox, Oy, Oz axes
are:

w 0Ot, @ Ot, s Ot.

It suffices for us to repeat the reasoning that we made before, with several reprises, in
order to see that the desired function W has the remarkable form:

W(X(), Yo, <0, Z, §i) 771') é.l') Dis 4, Ti, 5) 77} é.: D, q, r)a

which is analogous to the one we encountered for the deformable line, surface, and
medium at rest.
We say that the integral:

.[jz .[ .[ LO Wax,dy,dz,dt,

is the action of deformation and motion in the interior of the surface S of the deformed
medium in motion and in the interval of time between the instants #; and ;. On the other
hand, we say that W is the density of the action of deformation and motion at a point of
the deformed medium when taken at a given instant, and referred to the unit of volume of
the undeformed medium and the unit of time. If we give A the same significance as in

w . . . . o
sec. 51 then —— is the density of that action at a point and a given instant, when referred

to the unit of volume of the deformed medium and the unit of time.
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62. The external force and moments; the external effort and moment of
deformation; the effort, moment of deformation, quantity of motion, and the
moment of the quantity of motion of a deformable medium in motion at a given
point and instant. — Consider an arbitrary variation of the action of deformation and
movement in the interior of a surface (S) of the medium (M), and the time interval
between the instants #; and #,, namely:

o [T Wzt = HLO{ (oo

+ﬂ6. &1 aW +6W6§+6W677+6W6g
ap; ar, & 677 65
N aaW (5q + 2 6r}dx0dy0dz0dt
P

By virtue of formulas (58),(58'),(59), (59'),we may write:

oF Il st ([ | ] S v+ 2205

i

+a—(g(5[ -£0K' +Z§ +r,0Xx - péz)+—(§é] -~ .§I'+%+pi(5'y—qi§’x)

i i i

+ﬂ(ﬂ+q.(ﬂ('—r[é]'j+a—(a§] r.ol’ —p(SKj (% pi(ﬁ]'—qi(ﬂ'ﬂ
g, \ ap, ar; \ 90,

+ﬂ(;751<' _eor + 9% 4 ast—roty+ W cor — ok + 290 1 o - pot)
& ot an ot

+—(§§J -ndl’ +£+p§y qéx)+_[ﬂ qéK’_rd]'j
65 dt dp \ dt

doK

+— +70l' - (SKJ [—+p(5J'—q§I'j dx,dy,dz,dt.
or \ dt

d(SJ
dq
We apply GREEN’s formula to the terms that explicitly involve a derivative with
respect to any of the variables, pi, p2, p3, and perform an integration by parts over the
terms that explicitly involve a derivative with respect to time, t. If we let [y, mo, noy,
designate the direction cosines with respect to the fixed axes, Ox, Oy, Oz, of the exterior
normal to the surface, Sy, that bounds the medium before deformation at the instant, ¢,
and designate the area element of that surface by doy, then we obtain:

) | ”S Wax,dy,dz,dt =
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i oW ow ow ., oW oW ow |,
.[ ” L, +m, +n, X+ 1, +m, +n, Oy
995 651 652 a§3 d

m a1, 91,
ow ow ow ., ow ow ow ).,
+| [, +m, +n, 0z+| 1, +m, +n, ol
¢, Clgs 953 ap, ap, 9P,
+(l0 w +m, ow + 1, awjél#(lo W +m, W + 1, aWjéK’ do,dt
dq, 9q, dq, or, r or,
T | B AL TP LA LA VLT T
5o\ 0& on ¢ op aq or t
2 d oW oW ow d oW ow aw |,
J. J.H +q, -, +— +q -r O X
(Rl ap; 98, ds; dm, ) ot o0& ~ dg  Ipy
d oW 6 oW ow |,
+ +7, - pl I’ -p oy
|~ 9p; an, & 6t6n 5 s
< 0 oW XL W
+ > pi —CI, 2
| T\ 9p; 9g; a1, 8t65’ Tae
' 0 oW oW
+ +ql _rl + i _gi
L apt apt art aqt agt ant
d oW ow oW ow ow |,
r -G Jl
dt dp or dq ag an

da oW ow ow ow ow
+ z +D; -4, +§i -7,
9,0, o, 9g; ap, an, a&;

i w +p w -q w +& aW aW OK' bdx,dy,dz,dt.
dt or dq op an 65

As in sec. 52, set:

, ow ow ow , ow ow ow
Fy=l,—+my—+n,—, I, =1, +my, +n, ,

a§1 a§2 853 ap, ap, ap;

, ow ow ow , ow ow ow
G, =1, +m, +n, , Jo =1, +m, +n, ,

an, an, an; dq, dq, 99,



THE DEFORMABLE MEDIUM

177
) w
H(’)=lan+man+nan, K0=103W+m06W+noa ,
95, s, e ar, ar, or,
and, in addition:
A=W W i
p=W W W
ap dq ’ or

' d oW ow ow d oW ow oW
Xo=2 it el K et r
op; 9§, g, 'am, ) at

, g oW W oW\ dow W oW
Y0=z +I’i —pi 4+ —
dp; I, a&, ac

: J W ow ow ow oW
N, = Z Pi —4q; +§ /I
dp, or, aq; ap, an, I,
d oW ow oW oW W
— -q §—-1y
dt or dq ap on 0E

This makes:

) J‘:z ” J’S Wdx,dy,dz,dt
= I HS (Fyox+GodYy + Hy0z+ 1,01 + 1,01+ K 0K Ydo,dt
T A0+ Y+ €0 ol + Q'+ RO ey |

ST XG0+ Yo+ Zi0 4 Lo+ Mya) + NyOK Yoy
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If we first consider the quadruple integral that figures in the expression for

o .[ ; J. J.J.S Wdx,dy,dz,dt then we call the segments that have their origin at M and whose

projections on the axes Mx',My',Mz' are X_.Y,,Z, and L;,M;,N, the external force
and external moment at the point M at the instant t, referred to the unit of volume of the
position of the medium at the instant t, respectively.

If we then consider the triple integral that is taken over time and the surface Sy then
we call the segments that issue from the point M whose projections on the axes
Mx',My' .Mz’ are -F/,-G,,—H, and -I,,-J,,—-K| the external effort and external
moment of deformation at the point M of the surface S that bounds the deformed medium
at the instant t. At a definite point M of (S) these last six quantities depend only on the
direction of the external normal to the surface S. They remain invariant if the region we
call (My) varies, but the direction of the normal does not change, and they change sign if
this direction is replaced by the opposite direction.

Suppose that one traces a surface Z in the interior of the deformed medium that is
bounded by the surface S, which, either alone or with a portion of the surface S
circumscribes a subset (A) of the medium, and let (B) denote the rest of the medium
outside of (A). Let Xy be the surface of (My) that corresponds to the surface S of (M), and
let (Ap) and (By) be the regions of (M) that correspond to the regions (A) and (B) of (M).
Mentally separate the two subsets A and B; one may regard the two segments
(-F,~G,,~-H,) and (-1,,~J,,~K;) that are determined for the point M and the
direction of the normal to X that points to the exterior of (Ag) as the external effort and
moment of deformation at the point M of the frontier Z of the region (A). Similarly, one
may regard the two segments (F,,G;,H,) and (I;,J,,K,) to be the external effort and
mOment of deformation at the point M of the frontier £ of the region (B). By reason of
this remark, we say that - F, ~G,,~H, and -1,,~J,,~K, are the components of the
effort and moment of deformation that is exerted on the portion (A) of the medium (M) at
M along the axes Mx',My',Mz', and that F,,G;,H, and I,,J,,K are the components
of the effort and moment of deformation that are exerted on the portion (B) of the medium
(M) at M, along the axes Mx',My',Mz'.

Finally, if we consider the triple integral over the volume of (M) at the instant 7,

whose values are taken at the extreme instants #; and #, , then we call the segments that
have their origins at M and whose components along the axes Mx',My' , Mz are A',B',C’

and P',Q",R' the quantity of motion and the moment of the quantity of motion at the
point M of the deformed medium (M) at the instant t, respectively.

63. Diverse specifications for the effort and moment of deformation, the
quantity of motion, and the moment of the quantity of motion. — As in sec. 53, set:

p W W W
08, an; 95,
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W W W

P'/_ ’ i ’ i ’
p; 9, o

1

in which A',B/,C! and P,Q/,R’ represent the projections on Mx',My',Mz', respectively,
of the effort and moment of deformation that are exerted at the point M of a surface that
has a normal that is parallel the axis Ox, Oy, Oz that we describe by the index i before
deformation. Indeed, it suffices to recall that we already agreed to replace the letters xo,
Yo, 2o that correspond to the indices 1, 2, 3 by this convention with o1, 0, 03. Recall that
this effort and moment of deformation are referred to the unit of area of the undeformed
surface at the instant 7.

The new efforts and moments of deformation that we just defined are related the
elements that the introduced in the preceding section by the following relations:

! ! ! ! ! ! ! !
Fy =1,A + myA, +n,A;, I, =1,P +m,P, +n,P;,

! ! ! ! ! ! ! !
G, =1,B, +m,B, +n,B;, Jo =1,0, + m,0, +n,0;,
H,=1,C +m,C, +n,C;, K,=I,R +m,R,+n,R;,

0A! A’
E —Y+¢q,C/ -rB] +_6 +qC'-rB'- X, =0,
00 ot

i

0B’ B’
Z —L+rA - p.C| +—a +rA' = pC'-Y, =0,
00 ot

aC! '
Dl —+p.B -q.A +£+pB'—qA'—Z(; =0,
9, ot

i

aP, ’ ’ I I a[),, ! ! ! ! !

Z -+ qR -0, +n,C -¢.B; [+ +qR -rQ +nC -¢B - L, =0,
00 ot
anl !

00!
Z(a_-'-ri[)i,_piRiI+.giAiI_§iCi,J+%+rP,_le+g4l_§Cl_M(l) =0,
Pi 4

OR’ R’
Z(a_'+ Q) - q,P +EB] - ’ZAIJ + 04 pQ'~ P + 5B~ A = N} =0.
0

1

One may propose to transform the relations we just wrote independently of the values
of the quantities that figure in them that are calculated by means of W. Indeed, these
relations relate to the segments that are attached to the point M to which we gave the
names. Instead of defining these segments by their projections on Mx',My',Mz', we may
Just as well define them by their projections on other axes; the latter projections will be
coupled by relations that are transforms of the preceding ones. Moreover, the
transformed relations are obtained immediately if one remarks that the original formulas
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have simple interpretations (') by the adjunction of axes that are parallel to the moving

axes at the point O.

1. As in statics, we confine ourselves to the consideration of the fixed axes Ox, Oy,
Oz. Let Xo, Yo, Zo and Ly, My, Ny denote the projections of the external force and the
he deformed medium at an instant ¢ onto
these axes, and let Fy, Go, Hy and Iy, Jo, Ko be the projections of the effort and the
moment of deformation on a surface whose exterior normal has the direction cosines [,
myo, no before deformation at the instant ¢. Let A;, Bi, Ci and P;, Qi, R; be the projections of
the effort (A, B/,C/) and the moment of deformation(P/,Q/,R/),and let A, B, C and P, Q,

R be the projections of the quantity of motion (A, B, C) and the moment of the quantity of

external moment at an arbitrary point M of t

THEORY OF DEFORMABLE MEDIA

motion (P, O, R). The transforms of the preceding relations are obviously:

F, =1,A +myA, +n,A,,
G, =1,B, +m,B, +n,B,,
H,=1,C, +m,C, +n,Cj;,

P.

39

Jo =1,0, + myQ, +n,0;,
K,=[l,R, +myR, +n,R,,

I, =1,P +m,P, +n,

A
o4, + 04, + 04, +d—A—X0 =0,
ox, dy, 9z, dt
oB
9B, + 9B, +— +§—Y0 =0,
ox, dy, 0z, dt
aC
9C, + 9C, +—2 +d—C—ZO =0,
ox, dy, 0z, dt
P, P, 0P,
ok +a 24— +d—P+C1 9y +C, 9y +C, 9y +Cd—P
ox, dy, 9z, dt 0x, Y, "0z, dt
_B, 0z _B, 0z _B, 0z —BQ—LO= ,
0x, dy, 9z, dt
00, 00, aQ3+d—Q+A1 0z VA, 0z P A 0z +A£
ox, dy, 0dz, dt 0x, dy, 0z, dt
e ox _c, ox _c, ax_cﬁ_M(): ,
0x, ay, "0z, dt
R
dR, OR, OR, 41_Ie+B1 o g O g dx  pdv
ox, dy, 0z, dt ax, dy, 0z, dt
-4 o - A, o - A, o _Aﬂ_ 0=
0x, ay, 0z, t

" An interesting interpretation to note is the analogue of the one given by P. SAINT-GUILHEM in the

context of the dynamics of triads.
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2. Now observe that we may express the nine cosines «,a',---,7" by means of the
y exp v oy

three auxiliary functions 4;, A2, 43. Set:

D oydf == pdy =w\dl +wydh, + widh,,
Dady = =) yda = xidA + xsdh, + xidAs,
D Pda ==Y adff = 0ydA +0ydA, +04dA;.

The functions @;, i, ;i of A, A2, A3 so defined satisfy relations that we have written
several times already:

0w, Iw, s 40—y 0 =0
i) AT
04, 04,
ax'. oy
X o —olm =0, (,j=1,2.3),
04, 94,
o, o] vy 'y =0
iX) TW AT
A, 04,
and one has:
, 04, , 04, , 04, , 04, , 04, , 04,
p;, =0, +w, + W, , p=w, +w, + W, ,
00, 0, 0p; ot ot ot
B ,Ml_l_ ,a/12+ , 04, CI—X'MI+X' MZ+;(’ A,
=X p, & P, < ap, Yo "o 7o
, 04, , 04, , 04, , 04, , 04, , 04,
r, =0, +0, +0; , r=o0, +0, +0, ,
00, 0p; 0, ot ot ot

in which xo = o1, yo = 2, 20 = 3. If we let @;, )i, 0; denote the projections onto the fixed
axes Ox, Oy, Oz of the segment whose projections onto the axes Mx',My',Mz' are

@/, x,0] then we will have:
Za'da" = —Za"da' =w,dA, +w,dA, + w,dA,,

Za"da = —Zada" = x,dA + x,dA, + x,dA,,
D ada' ==Y ada =o0,dA +0,dA, + 0,dA,
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by virtue of which (1) the new functions @;, i, o; of A;, A, 43 satisfy the relations:

07, dw, o o

oA oA, KCITACE

dx;, dy.

aﬁj _a_i(l=o'iwj—0'jwi, (i,j:1,2,3),
i J

90 aa,._w -

oA on, KT

Once more, we make the remark, which will serve us later on, that if one lets oA,
0, 0As denote the variations of A, A, A3 that correspond to the variations
oa,oa -+ ,0y" of a,a',--+,y" then one will have:

o' =wdA +w,dA, +w,dA,,

o' = xidA, + x,dA, + x;dAs

OK' =o0,dA, +0,dA, + 0,dA,,

Ol =adl' + o]+ yOK' =@, 0A, + w,0A, + w,0A,,

o =a'0l'+ O]+ y'0K' = y,04, + x,0M, + 04,
0K =a"0l' + B'0]"+y'0K' = 0,04, + 0,0A, + 0,04,

in which dl, o/, K are the projections onto the fixed axes of the segment whose
projections onto Mx',My',Mz' are I',0J",0K'. Now set:

!yt ! ! ! !

Io =ZD’110 +X1J0 +01K0 = wlIO +X1J0 + OIKO >
! ! ! ! ! !

jo =ZD’210 +X2J0 +02K0 =ZD’210 +X2J0 +02K0 >
!y’ ! ! ! !

Ko =@l + x5 J ) + 05Ky = w31, + 3, ], + 04K,

[0 =ZD’1’L(;+)(1’M(;+O'I’N(; =ZD'1L0+){1M0+0'1N0,
/\/{0 =ZD';L(;+)(£M(;+O'£N(; =w2lﬂ+X2M0+02No’
N, =@ + ;M + 0N, =@, L, + );M, +O;,N, .

In addition, introduce the following notations:

' These formulas may serve to define the functions @;, ¥, o; directly and may be substituted for:
@ =aw +fy +yo’,

x —a'T +py +y'0, (i,j,=1,2,3),

n_r " __r

o =a'g' +BY +y'o.
i i i i
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I, =@,P'+ x,0] + O|R =@, P, + 1,0, + O\R,,
X, =@, P'+ ;0] + O,R =@, P, + x,0, + O,R,,
2, =w B+ 0,0+ OR =@, P+ 3,0, + O4R,,
M=w P+ x0 +0R =w,P+x0+0,R,
X=w,P' +x,0'+0,R =w,P + x,0 +0O,R
S=w,P' + ;0" +0,R =w,P+ 3,0+ 0,R

and, instead of the latter system, in which either P,Q/,R,P',Q',R" or P;, Qi, R;, P, O, R
figure, we have the following:

@, , ax , [ d0] ' '
- —Lt_P - .—l+I’ZD' R. ! . —q.w
Ly + E,Lpl l{ap ,xj Q‘(ap[ - po, j l[api X 4, lj

1

+ A'/(Xllgi _0-1/77,')"' B'/(O'lg' _wllgi) + Ci/(wllni _){1/51')]

!

BH a i /a ! !
+__P(%+qal_r)(1j Q(;il"'rwl palj_R(%"‘le_qwlj

+A(yic-om)+B(0/-wc)+Cl(wn-x& =0,

with two analogous equations. If one remarks that the functions &, #;, &, pi, ¢i, ri and &,

n, & p,q,r,and Ay, Ay, 43, 94 (MZ 0% d4 dk, d7, give rise to the formulas:
api apz apz dpl dpl dpl

aE p, Iw
Y + )6 —om, =0, 1 "o, T4OiTNX
J J

d .

/1l +0'& -ws, =0, % a){’+rw -p,;0;,
oA, A, dp;

ag ! ! ar / !

_l+w'77i_)f'§i=0’ —=—"+ X, q;9;,
oA, oA, 9 o
0& , , ) dw

67+X,-§—0,-77=0, 87p‘7+610 —rx;s
j j

on , dg X,

—+0&-ws=0, — =

A, / A, ot

il , , or 30

— +w'n- =0, —_— -qw
Py X5 on, +PX; =4

that result from defining relations for the functions @), /,0, and the nine identities they
verify, then one may give the preceding system the new form:
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08 , 91, 196, ,0p; , 9g, , or;

=L, + Z _A:__ —-C——-F—-0—/-R—-

9, A aj'l A oA A, A

+£—A/ a§ _B/ 677 _C/ ag _P/ ap _Q, aq —Rl or =0,
ot A, A, A, oA A, oA

with two analogous equations.

3. Finally, we shall subject the preceding two equations that we introduced to a
transformation that is analogous to the one that led us, in sec. 53, to the generalization of
the equations of the theory of elasticity that relate to effort.

To abbreviate the notation, let X;,)}, 2, ,L,,M,, N, denote — for the moment — the

left-hand sides of the transformation relation that refers to Xy, Yy, Zy, Lo, Mo, No,
respectively, and observe that one may summarize the twelve equations we have
established by the following:

. I A+ 20 + 2020 + Lo+ Moty + N )elnydlydz,
+.[2'[S {(F, =1,A -m,A, —n,A)A +(G, —1,B, —m,B, —n,B;)A,

+(H,-1,C, -m,C, —n,C))A, + (U, -1,P, —m,P, —n,P,)u,

+(J, -1,0, -m,Q, —n,0,)u, +(K, -l,R, —-m,R, —n,R;)u,}do,dt =0,

in which Ay, A&, A3, w1, to, us are arbitrary functions, and the integrals are taken over, on
the one hand, the time interval between the instants #; and ¢, and, on the other hand, the
surface Sp, of the medium (Mp) and the domain it bounds. If we apply GREEN’S

theorem and integrate by parts then the relation that we just wrote becomes the following
one:

- .[12 .”J.so (XOAI + YOAZ + ZOAB + Loﬂl + Moﬂz + N0ﬂ3)dx0dy0dz0dt
+ .[2 .”s (FoA + Gody + HoAy + L, + J g, + Ky uy)dode
i {”.[s (Ad + B2, + CAy + Pu, + Qu, + Rﬂ3)dx0dy0dz0}z

5) a/\w' 1)& dﬂ C”A, aﬂ, A’ A’
.[ J.J-.[ ( 1 ()jﬂ 42 + A,; 1 1 1 + B1 2 B 2 B,; a d
h So ax + 2 B )

dy, 0z, dt 0x, dy, 0z, dt
A A A dA
+C,—+C,—+C,—=>+ C—= |dx,dy,dz,dt
ox, y, "0z, dt

2 6 d d d 0 0 d
.[t J.J-.[ ALll ALll +Pf; lLl +P ALll Ql ‘le +Q2 ‘le +Q,; ‘le +Q ‘le
il So yO i aZO ot axo ayo ’ GZO dt
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d d d d
+R, Hs +R, H +R, “  REG deodyodzodt
ox, y, 0z, dt
2 d 0 d d
+.r ”I C, Y +C, N +C, Y w2
Rt ax, y, 9z, dt
9z 9z 9z dz
-B -B -B - B—|u,dx,dy,dz,dt
1ax0 2 3y, 3 0z, dt}ll 04y a4z
2 d
+.r J:U (Al 0z +A, “ + A, 9z +A%
R ox, ay, 0z, dt
0x 0x 0x dx
-C -C -C -C— |\u,dx,dy,dz,dt
1ax0 2 3y, 3 0z, dt}iz 04y a4z

> ) ) ) d
o ”LO(BI N

ady ay ay dy
-A -A -A - A— |u.dx.,dy,dz,dt = 0.
1 ox, 2 3y, 3 0z, dr Hsax,ay,az,

We seek to transform this last relation when one takes the functions x, y, z for other
new variables, while preserving r. We apply the elementary formulas for the change of
variables that we recalled in sec. 53 to the functions A;, A», A3, i, to, w3 . With S always
indicating the surface of the medium (M) at the instant ¢ that corresponds to the surface Sy
of (Mp). Moreover, let X, Y, Z, L, M, N be the projections on Ox, Oy, Oz of the external
force and external moment that are applied to the point M at the instant 7, and referred to
the unit of volume of the deformed medium (M), and let F, G, H, I, J, L denote the
projections on Ox, Oy, Oz of the effort and moment of deformation that are exerted at the
point M on S, referred to the unit of area of S. Finally introduce, as in sec. 53, eighteen
new auxiliary functions py, ..., gx, ... by the formulas:

Ap = AA, DA g =P D
X, 0 0z, 0x, 0 20
Apu=AlaZ+AzaZ+A3aZ, qux=ﬁaz+P26z+P36z,

0x, Y, 0z,
and the analogous one that is obtained by replacing:

Al, AZ, A3, pxx; pyx; pzx; Pl, PZ, P3, QXx; ny; qu
by

Bl, BZ, B3, pxy; pyy; pzy; Ql, QZ, Q3, qu; ny; qu;
and then by

Cl, CZ, C3,pxz; pyz; pzz; Rl, RZ, R3, QXz; Qyz; qu ’
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respectively, with the quantity A having the same expression as it did in sec. 53. We
obtain the transformed relation:

- J ” L (XA +YA, + ZA; + Lu, + Mu, + Nuy)dxdydzdi

+J‘t’z J‘J‘S (FA, +GA, + HA, + 1u, + Ju, + Ku,)dodt

{m it bt + 2, +§u3>dxdydz}j
1, d oA oA oA oA
_.[1 .”J.so(p” a}; +D, ayl + D, aZ1 +p,, aXZ ++p,, ay3

Adﬂ Bd& Cdi
Adt Adt Adt

2 ou ou ou ou ou
e N e e e R
4 So 0x ay 0z 0x 0z

JPduw Qdu, Rdu,
Ade A de A dx

N v L G+ +7
WS WP TP T T A ST\ TP N A )

[ny‘ +de A dy

jdxdydzdt

jdxdydzdt

in which the integrals are taken over, on the one hand, the time interval between the
instants #; and 7,, and, on the other hand, the surface S of the medium (M) at the instant ¢,

and the domain it bounds, with d o designating the area element of S.

Once again, we apply the GREEN formula to the terms that refer to the derivatives of
A, Ao, A, o, ps With respect to x, y, z, and an integration by parts (1) of the terms that
involve the derivatives of A;, A2, A3, w1, o, w3 with respect ¢, and let [, m, n denote the
direction cosines of the exterior normal to the surface S at the instant 7 with respect to the
fixed axes. Since A, A, A3, w1, o, w3 are arbitrary, they become:

F =Ip, + mpy + np.,, I =g + mqy, + ng.,
G =Ip,y + mpy, + np;,, J = lq.y + mqyy + nq.y,
H = Ip..+ mp,, + np_, = lg; + mqy; + nq,
0 op,., 0 1 dA
p”+p)+p” —d——X 0,
0x ay dz A dt
Py B S 108y,

0x ay dz A dt

" Since the field of variation actually varies with ¢, we perform that integration by parts by the intermediary
of passing to the variables x, Yo, 20. We suppose that A is positive and equal to IAl.
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) p,. 9 1
pxz_l_ p}«»_l_ pzz _dC

—-Z =0,
0x ay 0z A dt
0 dq,. 9 1 P B
qxx + q}' + qzx + pw _ pz\: d gﬂ __% —_ L = 0,
0x ay 0z "TAdt Adt Adr
aqu aq}'y aqz_\f 1 dQ A dZ C dx
+ + +Py Dyt ——— = =0,
0x ay 0z : A dt A dt A dt
0 9q,, 9 1dR B A
qxz’, + q¥ + qzz + pxy _ pyv +_d _@__Q_ =0.
0x ay 0z i T ANdt Adt Adt
The significance of the eighteen new auxiliary functions p., ..., Gx, ... result

immediately from the relations that we just wrote. Indeed, it is clear that the coefficients,
Dxx> Pays Pxz Of [ 1n the expressions of F, G, H represent the projections onto Ox, Oy, Oz of
the effort that is exerted at the point M on a surface whose exterior normal is parallel to
Ox, and that the coefficients g.., ¢, g of [ in the expressions for I, J, K are the
projections onto Ox, Oy, Oz of the moment of deformation at M relative to the same

surface.

64. Exterior virtual work; theorems analogous to those of Varignon and Saint-
Guilhem. Remarks on the auxiliary functions that were introduced in the preceding
paragraphs. — On a deformed medium (M) between the instants #; and #, in an arbitrary
state of virtual deformation, we give the name of external virtual work to the expression:

o)

67T, = - { mg (A8'x+B&'y+C'8'z+PoI'+Q8J +R 6K ’)dxodyodzo}

- J HS (F)0Xx+ G0y +H} 07+ 1,0'+ J,0]' + K,0K )do,dt
[ [ R+ Gy + HSZ + 101 + J3o) + K 0K b, dydz,d.

We refer to the notations of sec. 60, and, moreover, let dl, &J, K be denote the
projections onto the fixed axes of the segment whose projections onto Mx',My',Mz' are

01',6J',0K’' in such a way that one has, for example:
—6]=a”§a’+/)’”§/)”+}/”§}/’=—(a éa”+/))§/))” III
in which we are always supposing that the axes in question have the same disposition.
This being the case, suppose, as in sec. 63, that one has given the arbitrary functions

A, Ao, A3, o, s the significance that is defined by the formulas:

M=dx, h=0y, =&, =0, w=0ad, u=0K.
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We then see that the preceding relations we obtained between the new auxiliary functions
express only the following condition:

If a trajectory of the deformed medium is given any of the virtual displacements of
sec. 60 then the external virtual work J1. is given by either the relation:

t2 d0x 00x d0x 90y 907
-07, = +p, +P,. +p., +otp —
¢y H-[So(p” ox Py dy P: 0z Py ox Pa: dy

Adox Bddoy Cdoz
e —
Adt ANdt A dt
+.[tz J'J'J- a0l N a0l N 90l N 0] s 00K
N s, q ox 9y, ay q . Py 4q sy ox q 0z
P dol Q doJ R R doK
A dx A dc A dx

§ Cdy Bdz Adz C dx
_.[1 .”‘J.so{[pﬂ ~ Py +XZ_XE I+[pzx ~ Pt AE—XZJN

jdxdydzdt

jdxdydzdt

+ [ Py =Py +——— ——jéK }dxdydzdt

in which the integrals are taken over the time interval between the instants t; and t, and
the deformed medium, or by the relation:

6T = .[tz .UJ- aéx aéx FA, d0x +B, aéy +C, a_éz
So X, ayo " 0z, axo 0z,

x d(5y
+A dx,dy,dzdt
dt d d j 0@Yodz,
.[tz ”'.[ 851 85[ +P aol +0, 65] +R, d0K
f 995, dy, 0z, axo 9z,
dol d(SJ d(SK
+P + dx,dy,dz,dt
i 0 i j XodYod<
I a2 ve, Do, 2 yc
995 ox, y, 9z, dt
_p % _p 9% _p % g B s dydzdt
ax, , 0z, dt

) d 0 d d
_.[j J.J-LO(AI axzo + A, a;; + A, aZ +Azj

-C, -C, -C, —C%Jdldxodyodzodt
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) d d d d
- ”LO(BI 2orp e g

ox, ay, "0z,

in which the integrals are taken over the time interval between the instants t; and t, and
the undeformed medium at the instant t, because the formula that we gave above:

8T, = - { i L (A'S'x+B'6'y+C'8'z+PSI'+ Q6] + R’(SK’)dxodyOdzo} 2

h

([ (Fjox+Gioy+H6%+ 1,01+ T80 + Ky0K Ydodt
4 So 0 0 0 0 0 0 0
+J’t’z J‘J'J.S (Fo'é’x+G(;§/y+H(’)(§’Z+I(’)§I'+ JS‘SJ,"'K(’)éK')dedyodzodt,

which serves to define the external virtual work, may also be written:

5T = - { [I]. (A6x+BOy+COz+POI+001 + R(SK)dedyodzo} 2

h

— .[:2 ”SO (F,0x+ G0y + H 6z + 1,0l + J ,0] + K, 0K)do,dt

+ J:z J.”;O (X()dx + Yoéy + Zoéz + Loél + Mod] + NoéK)dxodyOdZOdt,

by virtue of the significance of Xy, Yo, Zo, Lo, Mo, No, Fo, Go, Ho, o, Jo, Ko, A, B, C, P, Q,
R, and likewise:

8T, = —{”J.S(féx+§§y+%§z+§(51 +%<§J+§(5K)dxdydz}

4

~ [ [[, (Fx+ Gy + Hoz + 161 + Jo + KoK )d e

+ .[,2 ”J'S (XOx + YOy + Zz + LAl + MOJ + NOK )dxdydzdt,

by virtue of the significance of X, Y, ..., N, F, G, ..., K.
Start with the formula:

o[ [[[. oWdx,dy,dz,dt + 5T, =0,

applied to an arbitrary part of the medium that is bounded by a surface Sy and the time
interval between the instants #; and #,. Since W must be identically null when the
variations dx, dy, &z are given by the formulas (60) of sec. 61, namely:
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o = (a1 + az — wsy)dt,
Oy = (a2 + wsx — anz) o,
& = (a3 + wy — wx)dt,

by virtue of the invariance of W under the group of Euclidean displacements, and &I, dJ,
JK are given by:
ol = w o, o = wndr, oK = ax0t,

and that this is true for any values of the constants a,, a», as, @, a», w; we conclude from
the expressions for §7; that just insisted on (') that one has:

{[ | L Adx,dy,dz, } + j | LO Fydo,dt -] [ L X dxydyydzdt =0,
{”LO (P + Cy - Bz)dx,dy,dz, fz + .[: ”SO (I, +H,y-G,z)do,dt

L 7oV =0,

and four analogous equations. In these formulas, one may imagine that the frontier Sy is
variable.

The auxiliary functions that were introduced in the preceding paragraphs are not the
only ones that one may imagine. Upon confining ourselves to their consideration, we add
the same simple remarks as in sec. 54.

By definition, we have introduced two systems of efforts and moments of
deformation relative to a point M of the deformed medium at the instant 7. The first of
them are the ones that are exerted on surfaces that have their normal parallel to one of the
fixed axes Ox, Oy, Oz before deformation. The second are the ones that are exerted on
surfaces that have their normal parallel to one of the same fixed axes Ox, Oy, Oz after
deformation. The formulas that we indicated give the latter elements in terms of the
former; however, by an immediate solution, which we will not elaborate upon, one
inversely obtains the former elements in terms of the latter.

Now suppose that one introduces the function W. The first efforts and moments of
deformation have the expressions we already indicated, and one immediately deduces the
expressions for the second ones. However, in these calculations, one may specify the
functions that one must introduce according to the nature of the problem, and which are,
for example, x, y, z, and three parameters ) A1, Ao, As, by means of which one

n

expressesa,a’,--+,y".

' The passage from the elements that are referred to the unit of volume of the undeformed medium and the
area of the frontier Sy to the elements that refer to the unit of volume of the deformed medium and the area
of the frontier S at the instant # is sufficiently immediate that it suffices to confine oneself, as we have done,
to the first, for example.

% For such auxiliary functions 4;, 4,, 43 one may take, for example, the components of the rotation, which
makes the axes Ox, Oy, Oz parallel to Mx',My',Mz',respectively.
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If one introduces x, y, z, A1, A, A3, and if one continues to let W denote the function
that depends on xo, Yo, zo, the first derivatives of x, y, z with respect to xo, Yo, 20, f On
A1, A2, A3, and their first derivatives with respect to xo, yo, zo, ¢ that are obtained by
replacing the various quantities &, 7;, &, pi, ¢i, i, & 1, C, p, g, r in the function W(x, yo,
2.t & i, G, pi, qi, i, & 1, & p, q, r) by the values they are given by formulas (54), (55),
(54"), and (55"),then one will have:

Ao A AT AT
0— 0— 0— 0—
ax, ay, 9z, dt

B =0, B= . =0 =il
5 9 ol 5 y
ax, ay, 0z, dt

¢-2, -2, -2, ¢,
592 592 592 54
ox, y, 9z, dt

o - ow oW _aW

7
apl apl apl

o - ow oW 4

oA T e T aa
apl apl apl

- ow 0w oW
e o T
dt dt dt

65. Notion of energy of deformation and motion. — We must remark that our
present exposition contains the statics of deformable media as a special case. Indeed, it
suffices to consider a reversible virtual modification, in the sense of DUHEM, instead of
envisioning a realizable virtual deformation, as we have done.

This observation leads us to consider the notion of the energy of deformation and
motion. We propose to determine the work done by external forces and moments, as well
as external efforts and moments, of deformation that depend on an arbitrary time interval
for a real modification. For this, it suffices to calculate the elementary work relative to
time dt. The latter is:

U1, @+ ¥y +-odvdvdz, - [[, @&, +nGy+-dorfir.
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If one replaces X;.Y,, --,F,,G;, - ,by their expression as a function of the action,

and if one performs an inverse calculation to the one that led us to their definition, then
one immediately obtains, by virtue of the CODAZZI equations:

I (45 2 o, f,

in which we have set:

pogdW W oW oW oW W

& on g ap dq ar

In particular, if one considers the case in which W does not contain ¢ explicitly, in
ow . . . . .
such a way that o is null, then the preceding value becomes the differential with
t

respect to time of the expression:
[ L Edx,dy,dz, ,

which may be called the energy of deformation and movement at the instant t.

At this point in the discussion, we need to make several important general remarks
that will find further application in what follows in the theory of Euclidean action.

The only notion of Euclidean action of deformation and motion that suffices for us
furnishes, in a very extended case, a constructive definition of the quantity of motion and
the moment of the quantity of motion, the effort and moment of deformation, and the
force and external moment. One may distinguish a dynamical part and a static part in the
force and the external moment by grouping, on the one had, the terms that contain only
the dynamical acceleration, and, on the other hand, the terms that contain only what one
may call the kinematical acceleration; this distinction obviously expresses an extension
of ’ALEMBERT’s principle. Similarly, suppose that external work is null, and that the
energy of deformation and motion remains invariant in time. We thus obtain the notion
of conservation of energy, which simply translates into the hypothesis that the medium is
isolated from the external world. In turn, we recover all of the fundamental ideas of
classical mechanics, and it is manifest that the particular form that they take in the latter
context must be what one envisions for the state of motion and deformation in an
infinitesimal neighborhood of the natural state, in which one supposes that W and its
derivatives are null.

66. Initial state and natural states. General indications on the problem that led
us to the consideration of deformable media. — In the foregoing, we considered the
trajectory of the deformed state, and, after describing the initial position (My) of that
deformed state at a definite instant 7, we referred it to the position (M) at an arbitrary
instant z. Considerations that are analogous to the ones we developed in sec. 56, and in
which the parameter that was thus introduced is now replaced by time r may be repeated
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here if we make one of the deformed states play the role that we attributed to the initial
state (M)).

However, one may also imagine that the functions x, y, z that determine the trajectory
of the deformed state depend on one parameter, and that one distinguishes a particular
value of this parameter. One thus defines a sequence of states that one may call natural
states, and their trajectory may be called the trajectory of natural states. One may use
the new parameter as we did in our Note sur la dynamique du point et du corps invariable
and study, in particular, the trajectory of the deformed states that infinitely close to the
trajectory of the natural states.

Conforming to the previous indications, suppose, to fix ideas, that the external force
and moment are given by means of simple functions of xo, yo, 20, #, the elements that fix
the position of the triad Mx'y’z’. We may consider the equations of sec. 62 that relate to
the external force and moment as partial differential equations that relate to x, y, z and
three parameters A, A, A3, by means of which one expresses «,a',---,y". This viewpoint

is the one that presents itself most naturally. The expressions &, #;, &, pi» gi» i, & 1, & p,
q, r will be functions of — 0x ay az @ Q % A ~~-,%,~-,%,-~- (setting 0 = xo,
ap. dp. dp. dr dt dt ap; dt

02 = Yo, 03 = 20, as always) that we may calculate by means of formulas (54), (55),
(54" and (55").

Suppose that X,.Y,,Z;,L,,M,,N,, or, what amounts to the same thing, X,, Yo, Zo,
Lo, My, Ny are given functions of xo, yo, 20, t, X, ¥, 2, A1, Ao, A3. After substituting the
values of &, ..., r;, &, ..., r that one deduces from formulas (54), (55), (54') and (55'),the

expression W is a definite function of:

ax dz dx dy dz A, 6/'1q dﬂ., dﬂ.z d&
X, s ,Z ,t,_,... .o
0Yo2% ox, oz, dt dt dt Aot A oz, dt T dt T dt

that we continue to denote by W, and the equations of the problem may be written:

a ow N a ow N d oW K d oW
0y 5 0% "y, o X oz, o 0x di gdv
ox, ay, 9z, dt
a ow a ow g oW d oW
+ + +— =
0, aal 9y, aﬂ 9z aal dt a@
ox, ay, 9z, dt
a ow a ow g oW d ow
+ + +— =Z,,
0, aﬁ 9y, aﬂ 9z, aﬁ dta@
ox, ay, az, dt
9 oW 9 W 9 oW d W oW
0x, a% 9y, a% 0z, a% dt 6% A,
ax, ay, 0z, dt

=L,
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iaW +i ow +i ow +i ow _GW

0x, a% 9, a% 9z, a% dt a% oA,
ax(] ay(j aZO dt

iaW_l_iaW_l_iaW_l_iaW _aW_N.

9%, a% a9y, a% 9z, a% dt a% a4, o
a‘X"O ayo aZO dt

=M,,

in which £y, My, N are functions of xo, yo, 20, ¢, X, ¥, 2, A1, A2, A3 that result from the
definitions of sec. 63. This pertains to the formulas of the preceding paragraphs directly,
in a way that is more immediate than the definition of the Xo, Yo, Zo, Lo, Mo, Ny may

be summarized in the relation:
(SJ: HL Wdx,dy,dzydt + 6T, =0,
ie.,in:
(5.[: J .[ J.so Waxydy,dz,dt

=[], (Adc+ By + Cox+ PO, +00%, + ROA sy, |
[ [, (F0x+Gody+ Hdz+ T, 0% + T,0% + Kyok)dodi

SJUIILL CXOx KOy 4 Z,02 4 L0 + M, + NS dydegd.

67. Notions of hidden triad and hidden W. Case in which W depends only on x,
Yo, 20, t, &, i, G, & 1, &, and is independent of pi, gi, ri, p, ¢, r. Extension of the
classical dynamics of deformable bodies. The gyrostatic medium and Kkinetic
anisotropy. — The considerations that we exposed previously in regard to the hidden triad
and hidden W are also applicable to the deformable medium in motion. It suffices to
simply add that a hidden W will correspond to a hidden motion.

In particular, we shall examine the case in which W depends only on the quantities xo,
Yo, 20, t, &, mi, &, & m, £but not on the pi, g, ri, p, g, r. The equations of sec. 66 then
reduce to the following:

g ow a oW g oW d oW ow
+ + +— =X,, —+ L, =0,
dx, aﬂ 9y, aﬂ 0z, aﬂ dt a@ o4
ox, ay, 9z, dt
d 8W+8 8W+8 ow +i8W=O, ﬂ+/\/lo=0
0, aal A aﬂ 9z, aal dt a@ 94,

ox, ay, 9z, dt
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a Jw a oW a oW d ow ow
+ + +— =Z,, —+ N, =0,
0, aﬂ Yy aﬂ 9z, 4 9z dr a@ 94,

ox, ay, 9z, dt

in which W depends only xo, yo, 20, t, ﬂ, a_x @ ﬂ E,/L,Az,}%, and they show

ax, ox, dt dt’ dt
us that if we take the simple case in which Xy, Yo, Zo, Lo, Mo, N are given functions (1)
of xo, yo, 20, 1, ﬁ,-",ﬂ,@,ﬂ,g
ox, dx, dt dt dt
be solved for A, A2, A3. One thereby finally obtains three partial differential equations
that, by our hypotheses, refer only to xo, yo, 20, ¢, and to x, y, z, and their first and second
derivatives.

4,4, , A, then the three equations on the right may

Imagine the particular case in which the given functions Lo, Mo, N are null; the

same will be true for the corresponding values of the functions in any of the systems:
(Ly,M,,N,), (Lo, Mo, No), (L, M, N). From this, it results that the equations:

w_aw o aw
A, A, A,

amounts to:

e, W oW _p_p 9 g pd oD
ax, , "0z, ax, dy, 0z, dt dt

A az+A2 0z + A, 0z _c, 0x _c, 0x _c, ax=C@_A£,
ax, dy, 0z, ox, dy, 0z, dt dt

B g M g O g, D Al _pdx

ax, , 9z, dt dt’

i.e., to:

1( dz dy
-p,=—|B=-C™
Py ™ P A[ dt dt

1(  dy dx
=Dy =—"| A—-B—|,
Py = Py A[ dt dtj

which one may interpret as saying that the motion of the deformable body in question,
which constitutes the classical theory of elasticity as a special case, gives rise to a
moment whose three components are:

1 dx dz
s T FPx T, C__A_ 4
j P = P A[ dt dtj

"To simplify the exposition and to indicate more easily what we are alluding to, we suppose that Xy, Yy, Zy,
Lo, My, Ny do not refer to the derivatives of A;, A, As.
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dx

ax P _
di

l[c AQJ,
A dt dt

i[A
A

and thus has the effect of destroying the equalities:

Pyz =

Having said this, we observe that if one starts with a trajectory that is supposed to be
given and deduces the functions Lo, Mo, N, as in sec. 63, then, in the case in which

these three functions are null one may arrive at the result that accidentally presents itself,
1.e., for a certain set of particular trajectories; however, one may arrive at this for any
trajectory (M) as a consequence of the nature of the medium (M), and its motions, i.e.,

from the form of W.

Imagine the latter case, which is particularly interesting; W is then a simple function
(1) of xo, Yo, 20, ¢, and ten expressions &1, &, &, Vi, 12, V3, @1, @2, @3, v? that is defined by

the following formulas:

2
1| ox
£ — | +|—=
2 |\ ox, 0x,,

Pzy» Pzx = Daxzs Pxy = Pyz -

0z

2 2
| 2 2
+|— | —1y=—(E*+n’ +cl -1,
J (aon } 2(51 n +s )

1] ox dy 0z 1
2 2{(83)0} (ayoJ ( )’OJ } 2(52 7463 =D
o) (v (o2 1
X 'y z ) . i
3 2{(‘%0} (aZoJ (GZOJ } 2(53 Ny +¢5 =1
ox dx  dy dy 9z 9z
i ' ¥ = 5,85 + 115 + 6,63,
1 dy, 9z, 9y, 9z, 9y, 9z, 2 Sy + 1,15 + 6,65
ox dx dy dy 0z 0z
= + + —EE 4 N ,
Y 0z, dx, 0z, 0x, 0z, OX, 361 T 151, + 656,
0x o0x dy dy 9z 0z
= + + —EE + N ,
" ox, dy, 0x, dy, 0x, 9y, 152 T, + 6,6,
dx ox dy dy dz dz
= = 88 ), 66
VS ox, diowy  drox, S0 TS
dx ox dy dy dz oz
= A = 8, ), + 66,
V2 it oy, i ay, diay, Cor TS
dx ox dy dy  dz 0z
= = 8 ] + GG,
= 0z, dt 9z, dt 9z, 3 H 1775 + 665
dz

1%

RORCR

" The triad is completely hidden; thus, we may also imagine that we have a simply pointlike medium.

2
—| =& +n’+c .
dtj E+n +¢

dx
dr

)



THE DEFORMABLE MEDIUM 197

The equations deduced in sec. 62 and 63 reduce to either:

aA/ li li A/ li li li ! li li li
Z —~4+q,C! -rB] +d—+qC -rB' = X, F) =1,A +m,A, +n,Al,
p, dt ;
aBl li li Bl li li li ! li li li
Z —L 41 A -p.C] +d—+rA—pC =Y, G, =1,B] + m,B, + n,B.,
p, dt ;
C li

9P

i

a / ! ! ! ! ! ! !
Z( -+ piBi/_CIiAiIJ-l- ddc +pB -qA =Z,, H, =1,C, +mC, +n,C;,
t

in which one has:

a a j ja}/k a¢l
Bi'=77iaW+77k aW+77j aW+778W, (i,),k=1,2,3),
de, Iy, e 99
Cl=c¢ 6W+§ re 6W+§6W
i TS k ?
de, dy, Ty, T oy
1 oW ow
A,=—_ + i
v v s zé:' 0Q;
ow ow
B,=__ + )
v v 277, 0@,
1 oW ow
C,=__ + o
v v ° d 0@,
or to:
0A
0A, 04, 04 dA_ Fy, =1, A +myA, +n,A,,

ox, dy, 9z, dt 0
dB, 0B, 0B, dB
+ +—+

— =Y, G, =[B +m,B, +n.,B.,

axo ayo aZO dl’ 0 0 01 02 03
aC

0C, , 9C, L 9C dC _, H, =1,C, +m,C, +n,C,,

ox, dy, 09z, dt 0

in which one has:
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with analogous expressions for Az, B,, C», Az, B3, C3 and

A=q)lax+q)26x+q)3ax 1 W dx
0x, 0y, dz, v dv ar’
B=q)lay+q)26y+q)3ay 10W dy
0x, 0y, 9z, v v dt
C-o, 0z + D, 0z ‘D, 0z +lawg,
0x, ay, dz, v 0v dt
upon setting:
0¢; 97, a%

or again to:
0 .,
P D, +6pzx 1dA
0x ay 0z A dr

op, dp, Ip, 1 dB
P + Py + Py +——=Y, G=lp,+mp, +np,,
ox dy oz Adt |

9 op,
D + Pr + apzz ld_c =Z, H = lpxz +tmp,, +np,,
0x ay 0z A dt ' ' '

X’ F=lpxx+mpyx+n’pzx’

in which one has:

2 2 2
po—tlo || Lo | Lo || fog, B X, Hy X &
A 0x, Y, "\ 0z, 0z, 0x, ox, 9y,

+| D, 0x +D, 0x +D, 0x ﬁ,
0 0z,

dt
{axayanayanay

1
P =g 0x, dx, W e 9z, 02,
e d0x ay dx dy e dx ay dx dy e dx ay dx dy
ayo 0z, azo ay, azo ox, axo 0z, axo ay, ayo ox,
+| D, 9y +D, 9y +0, 9y ﬁ,
ox, ay, "0z, )dt
1 9z 9 dz a 9z a
pzx = _{ 1__y Q Y 93 Y
A dx, 0x, ayo ay, 0z, 0z,

_(az ax 9z axJ _(az, ox 0z axj _(az ox 0z axJ
+E, + +E, + +E, +
dy, 9z, 0z, 9y, 0z, 0x, dx, 0z, ox, dy, 9y, 0x,

+| D, 92 +D, 92 +0, 02 ﬁ,
ox, ay, "0z, )dt
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with analogous expressions for p.y, pyy, Pzy, Pxzs Pyzs Pz - We thus obtain the most general
equations of motion for the classical deformable body.
In order for the effort to satisfy the relations:

Pyz = Dzy, Pzx = Daxzs Pxy = Dyx,

it is sufficient that one has:
@1 =0, ¢ =0, @ =0,

i.e., that W is independent of the arguments ¢, ¢, ¢3. More particularly, if one must
have:

pyz:pzyzos P =Px=0, pxy:pyxzo’
then W must be a simple function of A and v, and one finds that:

o _IW
Pxx = Pyy = Pz oA

one then finds the motion of a perfect fluid in this case.

When the functions £y, My, MNp are not null, W will have the twelve translations
&, ni, &, & n, £ for its arguments. On the one hand, the medium may be regarded as
gyrostatic, by giving a justifiable extension to this word, which was coined by LORD
KELVIN, and, on the other hand, the medium is endowed with kinetic anisotropy, in the
sense envisioned by RANKINE and then by LORD RAYLEIGH. For example, one

therefore makes the theory of the double refraction of light, such as was exposed by
LORD RAYLEIGH and GLAZEBROOK, rest on a purely mechanical basis.



V.- EUCLIDEAN ACTION AT A DISTANCE,
ACTION OF CONSTRAINT, AND DISSIPATIVE ACTION

68. — Euclidean action of deformation and motion in a discontinuous medium. —
Consider a discrete system of n triads in which each triad is distinguished by an index i

o1

that consequently takes the values 1,2, ...,n. Let M x;y,z; be the triad whose index is i,
with an origin M; that has the coordinates x;, yi, zi, and axes M ,x;, M,y;, M x, that have
the direction cosinesa,,c,as B, 8,5 y,.v!,y! with respect to three fixed rectangular
axes Ox, Oy, Oz. We suppose that the quantities x;, y;, zi,@;, ¢, --,y, are functions of
time ¢, and we introduce the six arguments &, #;, &, pi, gi, r; that are defined by formulas
(54") and (55") of sec. 60 with the index i.

Envision a function W of two infinitely close positions of the system of
triads M ,x]y/z,, i.., a function of 7, of x;, yi, zi,,,cx,,-+-,y/, and their first derivatives
with respect to ¢ (i takes the values 1, 2, ..., n). We propose to determine what sort of
form W must take in order for that function to remain invariant under any infinitesimal
transformation of the group of Euclidean displacements such as (60). Observe that the
relations (54") and (55') of sec. 60, with the index i, permit us to express the first
derivatives of the nine direction cosinese,,a;,---,y, with respect to ¢ by means of well-
known formulas that involve these cosines and p;, g;, ri, and, on the other hand, to express
these nine cosines «;,,a/,---,y; by means of &, 1;, &, and the first derivatives of x;, y;, z;
with respect to . We may therefore finally express the function W that we seek as a

function of ¢, of x;, y;, z;, and their first derivatives, and finally, of &, ;, &, pi, i, ri, which
we indicate by writing:

dx, dx. dx,
W=W t,xi, ,'aZ,'a_la_la_la iol]isSis Vi ,'ar,' .
[ YisZp S & 1:,6:5Pi+q j

Since the variations 6&, dn;, 6&, dpi, &q;, Or; are null in the present case, as a result of
the well-known theory of moving frames, we must write the new form for W that one
obtains by virtue of formulas (60), when taken with the index i, and for any a;, a, as,

wy, Wy, W3 :

) ) dz.
z aWéx,.+6W<5y,.+6W(5z,.+ w éﬂ W @+ oW s 2.
~| ox, ay, 0z, 9 dx,  dt 5 dy, dt 5 dz,  dt
dt dt dt
. . . dx, .dy, .dz. .
Replace dx;, dy;, dz; with their values in (60) and 67’,67’,67’ with the values
t t t

one obtains by differentiating them. Equate the coefficients of ai, a2, a3, an, an, ws; we
obtain the following six conditions:
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) Wy W W
T 0xX; A 7 0z,
and
dy. dz,
(64) D yiﬂ_ziﬂ.,.l oW _dz oW -0,
9z, dy, dt 5 dz; dt 5 dy,

dt dt
with analogous relations.
If we suppose that the points (xi, yi, zi) describe all possible trajectories then we
arrive at identities that verified by the function W of the 6n arguments of x;, yi, z,

dx, dy, dz, . .
7’,%,7’, and the last arguments &, #;, &, pi, i, ri, which we leave aside for the
t t t
moment. We seek to discover the resulting form for W.
We commence by treating the case of the system of three equations:

A ow ow
Vi—=%—|=0,
i=1 9z, dy;
4 ow ow
65 ——x,— | =0,
(65) ,Z=1: “ox, ' oz
@ oW aw)
i=1 i ayl i axt ,

that determine a function W of the 3n arguments x;, y;, z;. We have already encountered
this system in the context of the statics of the line, surface, and continuous three-
dimensional medium, in the case where p =1, p =2, p = 3. We leave aside the case p =
1, in which the three equations reduce to two. For p = 2 and p = 3, we have three
equations that form a complete system. For p =2, we have three equations, six variables,
and three independent solutions:

xl.z + yl.2 + zl.z (i=1,2), X1X2 + Y1y2 + 21225
for p = 3, we have three equations, nine variables, and six independent solutions:
Xl.z + yl.2 + Zl.z (l = 1, 2, 3), XiXi + yiyi + ZiZi (l = 1, 2, 3)

For p > 3, the system is still complete. To prove this it suffices to show that they admit
3p — 3 independent solutions, in which the number of equations is 3 and the number of
variables is 3p. We effectively have first, the p solutions:

xP+yl+z] i=1,2,...,p),
then the solution:
X1X2 + y1y2 + 2122,
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and finally, the 2(p — 2) solutions:
xX1Xi + yiyi + 212, X2Xi + Yoyi + 223 (i=3,4,5,.,p),

which are independent. W is thus a function of the 3(p — 1) independent arguments that
we just enumerated.

Now return to the proposed system that is formed from conditions (63) and (64). The
conditions (63) prove that W depends on xi, ..., Xu, Y1, --.» Yns 21, ..., Zn ONly by the
intermediary of the expressions:

Xo=x-x1, X3=x3-Xx1, ..., Xy=X,-x1,
Yo=y-yi, Y3=y-yi, ..., Y=y, -1,
L=n-2, LB=3-2, -n Ln=Zn—2.

On the other hand, set:
dx; dy;, _ dz;

T T Ao n+i? —=Z
dt dt dt

n+i?

and demand that equations (64) be verified by the function W of the arguments X», Xj,...,
Xon; Yo, Ya,..., You; 22, Z3,..., Zp, . For example, consider the first of equations (64); they

become:
(GW oW GWJ (aW oW GWJ
-y + +ooot +Z, + +oot

0Z, 07, 0Z, Y, dY; Y,
ow ow
+ -Y)——-(z,-Z,))—+---=0.
(yl 2)822 ( 1 2) oY,

y1 and z; disappear, and what remains are the first of the equations:

2 aw oW
STy 28

Vi < =0,
i=1 9z, a9y,
& oW oW
i — x,’ - | = Oa
i ox; 0z,
& oW aw
i . yi | = O
i=1 ayl ax

We thus come down to the system (65), in which x;, y;, z; are replaced by Xi,i, Yisi,
Zis1,and p by 2n — 1.

If we first suppose that n = 2, then we see that W is abstractly given in terms of the
arguments &, 7;, &, pi» ¢i» I as a function of the independent expressions:

X +Y7+Z; = —x)" + (0, - y)* +(2, - 2)°,
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dx d dz
X +Y2+Zz—( 1) (;;1) (dl‘l 51 +771 +§1,

dx dy dz
X2+Y2+ZZ - 2 2+ 2 2+ 245\2 - 2+ 2+ 2,
LY +Z, (dt) (dt) (dt) & +1; + 6,

dx dy
XX, +YVY. +Z,Z. =(x, —x,)—- + L+ (z,-z)—+
243 2453 22y =(x, l)dt (¥, yl)dt +(2, l)dt

dx dy

XXy 4 BYet 222, = (5 =) P O =007 (G = 2) 7
XX, +YgY4+ZQZ4=ﬂdx2 +@dy2 dZI de
; ‘ ‘ dt dt dt dt dr dt’

Therefore, we finally have that W is a function of &, 7, &, pi, qi, i, and the four
arguments:

(X _XI)Z +(y2 _yl)2 +(Z2 _Zl)z

dx dy dz
(=) g+ On =0+ G m )
dx dy dz
(xz_xl)d_tz"'(y yl) dl2 (Zz_Zl)d_tza

dx, dx, _I_@dy2 dz; dZ2
dt dt dt dt dt dt’

If we suppose that n > 2 then we see that W is abstractly given in terms of the
arguments &, 7;, &, pi» ¢i, 1 as a function of 6(n — 1) independent arguments:

(x; _‘xl)z +(y, - y1)2 +(z; - Zl)z (i=12,--,n),

X} +Y +Z] = ? ? ?

XoX3+ Yo Y3+ 2073 = (x2 - x1)(x3 - x1) + (V2 - y)(¥3 - y1) + (22 - 21)(z3 - 20),

(x2—xl)(x3—x1)+(y2—yl)(y3—y1)+(zz—zl)(z3—Zl),
X, X +Y, Y, +Z,Z, = dx dy dz
g g g (xz_xl)d_tk'l'(yz_yl)d_tk"'(zz_Zl)d_;a
(x3_x1)(x,'_x1)+(y3_y1)(y,'—y1)+(z3 Z)(Z Z])a

dx dy dz
(x3—x1)7t"+(y3—yl) dtk (25 Z) L

XX, +YY, +Z,7, =

We remark that one has:

(G =x ) =x )+ (0 =y ) =y ) +(z =2,z —2;) =20 +1 = 10),
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in which r is the distance between two points of the system. From symmetry reasons, one
may have to involve arguments in W that are not independent, in which case, one may

take, independently of the &, 7, &, pi, i, i, the following arguments:

==X () (5 )
d_x dx dyl dy, dZi de

1//:',' - - ’
dr dr  dr dr dr dt

=(x; - x; )dd— +(y, -y ) +(z,-2;)—;

the latter subsume the arguments with three indices A;; and arguments with four indices
Aix. They figure only when there are more than two points, and one sees that the action
on two points is influenced by all of the other points in this case. It is easy to establish
the relations that exist between these dependent arguments in a form that is sufficiently
complex; they are analogous to the relations between the distances r;; when the number of
points is = 5.

If we know the expression for the Euclidean action W in a the system of triads in
question, then, by a calculation that repeats the ones we made before, one may easily find
the expression for the external force and moment on an arbitrary triad. Since the action

dx, dy, d .
W is a function of x;, yi, zi, ; ;’ dZ by the intermediary of r;, ¥, Ay, it is easy to
dx, dy, d
regard W as primarily a function of x;, y;, z, ; ;’ dZ and of &, n;, &, pi, qi» ri. We
t
have:
0 :2 Wt

= {Z(Aiéxi + By, +C.0z, + POl + Q.0], + RIK, )}

h

_.[tZZ(Xiéxi +Y,0y, +Z.0z, + L.l + M.0J, + N.5K., )dr,

in which we have set:

A,=aaW+/3’,»aW+}’,aW, Pl=ai6W+/),laW+ylaW,
&, an, — 9g Ip; g, o

B - 1,6W+/),i,6W+ l,aW, 0, - l,aW /),l,aW+ i,aW,
agt 6771 agl apl a i al

Ci_ t”aW-I-[)’i”aW-l-yi”aW’ Rl_ t//aW+[)’iﬂaW+yiHaW’
agt a’?t a i apl agt art

in which (A;, B;, C)) and (P;, Q;, R;) are the quantity of motion and the moment of the
quantity of motion, respectively, for the triad of index i, and:
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Xi=%+i oW _ﬂ, Li=£+ci@_3iﬁ’
dr  dt a@ ox, dt dt dt

dt
Yi=@+i —aW _ﬂ, Mi=@+Aiﬁ_Ci&’
i dr| dy; |y, dt dt dt

dt
i=£+i oW _ﬂ, Ni=@+Biﬂ_Ai@’
dr  dt aﬁ 0z, dt dt dt

dt

in which (X, Y;, Z;) and (L;, M;, N;) are the external force and external moment of the triad
of index 7; what remains in these calculations is to exhibit the arguments r;;, ¥, A, but
this is easy.

We remark that the expression for the external force may be decomposed into two
parts. The first, which depends on the segments (A;, Bi, Ci), (Pi, Qi, R;) and their
derivatives, is the properly dynamical part. The second, which results from the presence
of the arguments r;, ¥, Ajx in W corresponds to the force that the triad of index i is
subject to on the part of the other triads of the system. Consider the expression:

dx, dy, dz.
E X —+Y—"+Y —+L(ap +6.q +y.r
{ 1 dl’ 1 dl’ 1 dl’ l( lpl ﬁlql }/l l)

+Mi(ai/pi + ﬁi/qi + }’,'/r,') +Ni(ai//pi + ﬁi//qi + }/i”ri)]dt’

i

which represent the sum of the elementary works of the forces applied to the different
triads. If we calculate them upon replacing X;, Y;, Z;, Li, M;, N;, with the preceding values
then we find the following expression for the elementary work relative to the dynamical
part of the external force and the external moment:

d(_ow oW oW 9w oW oW
Dl S At A Pt G+
~| dt\ " d&, on, ac, ap, aq, or,

1 1 1 1 1

_[oW dE, owdy, W dr dt,
65,» dt (977[ dt ar’ dt

and, for the elementary work due to the forces that are exerted between the triads of the
system, we have:
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S| L) AW v W dz W

+
~\| dt| dt a@ dt a@ dt aﬁ
dt dt dt

oW dzx,.+ oW dzy,.+ oW dzzi+aW@+aW@+aW&
g @i dt* o dyi di* o diod® o dx; dt o 9y, dt 9z, d
dt dt dt

If we add these two expressions, and set:

on G, op, dg. ' or,

1 1 1 1 1

ow ow ow ow ow ow
E=Z(§i 65 +17; '+§i + p; +q; +7;

G0 OW  dy, W dz, W
dt jdx, dt jdy,dt dz;
dt dt dt

then we see that the sum of the elementary works is:

dE+ﬂdt,
ot

in which we suppose that W is independent of 7, and when we give E the name of energy
of motion and position for the system of triads in question, we obtain a proposition that is
entirely analogous to that of sec. 65.

From the foregoing, it is easy to deduce a system dynamic that is established on the
same basis as the classical theory, but without limiting ourselves to central forces, as in
the latter case. Moreover, the actual exposition presents the advantage of associating the
diverse laws of force at a distance that were studied by GAUSS, RIEMANN, WEBER,
and CLAUSIUS ('), who uniquely introduced the arguments r;;, %, 7 to their true
origin.

69. The Euclidian action of constraint and the dissipative Euclidian action. —
The considerations that we must develop in regard to the Euclidian action at a distance
lead to the notion of constraint in a natural manner, a notion that was due to GAUSS and,
as one knows, was applied by HERTZ to the study of the foundations of mechanics by

' See R. REIFF and A. SOMMERFELD, Encyclopddie der Math. Wissenschaften, 52, pp. 3-62.
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f(l)llowing a path already explored by BELTRAMI, R. LIPSCHITZ, and G. DARBOUX
).

To simplify, let there be a point that describes a definite trajectory by the three
functions xo, Yo, 20, and time ¢ when its movement is free. On the other hand, denote the
functions of time ¢ that describe its trajectory when it is subject to constraints by x, y, z.
We may envision the two points (X, Y, Z), (Xo, Yo, Z), whose coordinates are obtained,
for example, by the formulas:

2 1d2
Xoxt P Le ~ar, X0=x0+dx°dt+— 2o dr?,
dt 2 dt dt 2 dt
dy 1d2y 2 dy, 1d2)’o 2
Y=y+—dt+———=dt", Y, =y, + dt +— dt”,
YT 0= T
dz 1d’z

d 1d’
Z=z+ a2, Zy =g 4 dr 2 dr?,
dt 2 dt dt 2 dt

which provide the TAYLOR development up to the first three terms. If we assume that
the constraints are frictionless then we may demand that at the instant # in question one
has:

dx dx, dy dy, dz dz,

xzxa = ,ZZZ,_ s s .
O YEI IO T AT dr dt

Having said this, the introduction of the notion of constraint due to GAUSS amounts
to replacing r by its value, where r denotes the distance, after having considered the
Euclidean action at a distance U,(r) in such a way that one is led to the function U of the
argument y that is defined by the formula:

(@Y (dy_dv Y (4 dn)
4 dt*  dt? dt*  dr? N

If we then apply the method of variable action, we have:

2 2 2 2 2 2
(5U=2{(5d X _ 54 x°j+y(éﬂ-éﬂj+z(éd 2_s4 ZOJ,

> dr dt* dr? dt? dt?

in which we have set:

" BELTRAMI, Sulla teoria generale dei parametric differenziali, Mem. Della R. Accad. Di Bologna, Feb.
25, 1869.

R. LIPSCHITZ, Untersuchungen eines Problemes der Variationsrechnung, in welchem das Problem der
Mechanik enthalten ist, Journ. fhr die reine und angewandte Mathmematik, 74, pp. 116-149, 1872;
Bemerkung zu dem Princip des kleinsten Zwanges, ibid., 82, pp. 311-342, 1877.

G. DARBOUX, Lecons sur la théorie générale des surfaces, 2™ Part, Book V, Chap. VI, VII, VIII, Paris,
1889.
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yoLdU(dx d’x, _ldu(d’y d’y, Z_ldU(d’z d’4 |
ydy\ dt*  dr’ ydy\ dar* dr* )’ y dy\ d*  ar?

If, with GAUSS, we call the argument y the constraint then the force X, ), Z may be
called the force of constraint that is applied to the point (x, y, z), and may be regarded as
having the effect of impeding the free motion of the point; on the contrary, the force — &,

— YV, - Z has the effect of changing the free motion into the constrained motion.

The essential difference between the present conception of force and the one that
results from NEWTON’s laws of motion is the following: in the latter form, one
considers the action relative to two infinitely close positions — one present, one future —
on the same trajectory; in the conception of GAUSS and HERTZ, the action is referred to
two future positions: one on the trajectory we called free, the other on the trajectory we
called constrained. In the two cases, one obviously has a theory that permits us to predict
the future motion, which is the object of point dynamics. However, in addition, and this
is the point that we would particularly like to clarify, the action is Euclidean.

On the subject, it is interesting to remark that GAUSS has explicitly established an
agreement between the action of constraint and the law of errors, which has the same
form in effect. One therefore sees that the fundamental character of the law of errors is
the Euclidean invariance of that law, and that the new branch of mechanics, which was
created by MAXWELL, BOLTZMANN, and W. GIBBS in the name of sratistical
mechanics, may likewise receive the deductive form that we propose to give ordinary
mechanics here.

We may further observe that the forces of constraint translate into an indeterminacy
that is the product of the definition of the force, and which leads to the introduction of
LAGRANGE multipliers, just as in the mechanics that one derives from NEWTON’s
ideas as in what one deduced from the notion of GAUSS constraint.

GAUSS’s idea may also be applied to friction by envisioning a Euclidean action on
the two points:

X -x+ B X, = x, + 5o g1,
dt dt
dy dy,

Y =y+—dt, Y, =y, +——dt,
y i 0= Yo d
z-+%a, 7, =25+ F0 a1,

dt dt

in which the point xo, yo, zo refers to a free trajectory, and the point x, y, z refers to a
trajectory that is traversed with friction. As we are dealing with sliding friction here, we

d. dx, d dy, d d
mustset:x:xo,y:yo,Z:ZO,_x=ﬂﬂ @ _ P dz_ 4

, u , u . We are then led to
dt dt dt dt dt dt

2 2 2
a function of the velocity v, = \/ (%J + (%J + (%J for the action, affected with a
t t t
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factor 1 — u, which corresponds precisely to the notion of the dissipation of the free
action at a point xy, Yo, 20-

The arguments rj;, ¥, Aix that we considered in sec. 68, translate, by definition, into
an analogous idea with regard to a triad we take to be isolated in the system of n triads in
question. One may, if one prefers, distinguish between these arguments, and say that r;;
is a potential argument, and that i, A;x are dissipative arguments. The central force
hypothesis thus amounts to considering only the dynamics of systems without friction at
a distance in mechanics. From the arguments r;j, ¥, Ajx, one may, on the other hand,

dr,
derive the particular argument of WEBER 7’ ,and if one passes from the discontinuous
t

medium to the continuous medium, in which the concept rests on the consideration of ds*
for the space, then one finds oneself led to introduce the viscosity arguments
ae, , aé, , de, , ar, , ar, , e in the action W. Beside such arguments, which were
dt dt dt dt dt dt
envisioned for the first time by NAVIER and POISSON, one must obviously also place
arguments such as the argument & & + n17p + £ &, which was considered in sec. 47, and
arguments such as @i, ¢, @3 from sec. 67. We confine ourselves to these summary
indications on viscosity, which has not been given further study in a sufficiently
systematic manner up till now.




VI. - THE EUCLIDEAN ACTION
FROM THE EULERIAN VIEWPOINT

70. The independent variables of Lagrange and Euler. The auxiliary functions
considered from the hydrodynamical viewpoint. — In the statics and dynamics of
deformable media, we took xo, Yo, zo, and xo, Yo, 20, t, respectively, to be the independent
variables. In the former case (statics), one lets xo, yo, zo denote the coordinates of the
point M, of the natural state (M) by imaging that this natural state is deformed in an
infinitely slow fashion so that its points do not acquire any velocity, and passes from the
position (My) to the position (M) in a continuous fashion (1). In the second case
(dynamic), one lets xo, Yo, Zo denote the coordinates of the position My at a definite instant
to of the point that is at M at the instant 7. The position (My) of the medium plays a
particular role.

The deformable medium (M) has been considered to be generated by a triad Mx'y'z’,

whose origin M has the coordinates x, y, z, and whose vectors have the direction
cosinesa,a’,a"; B,B'.8",y,y ,y" with respect to the fixed axes Ox, Oy, Oz. In the static
case x, y, z,a,a ,---,y" are considered to be functions of the independent variables xy, yo,
20, and, in the dynamics case, as functions of the four independent variables xo, yo, 20, ?.
In either case, we say that the independent variables imagined are the LAGRANGE
variables, and if we would like to make this concept specific we demand that:

(66) x = x(xo, Yo, 20), y = y(xo0, Yo, 20), Z = 2(x0, Y0, 20),
or:
(66") x = x(xo0, Y0, 20, 1), y = y(Xo0, Yo, 20, 1), Z = 2(x0, Y0, 20, 1),

and, similarly, we have either:

(67) 05=a(xo,yo,Zo), 05/=a/(xo,yo,Zo), a”=05”(xo,yo,Zo),
or
(67" a=a(x,,Y,29.1), & =a(Xy,Y0,201), A" =a"(xy,Y,:2051)s

with analogous formulas for S,8',8",7,r".y".

However, we may now imagine that one performs a change of variables on the
independent variables. In particular, by analogy with what one does in hydrodynamics,
we may imagine that one takes x, y, z, or x, y, z, f to be the independent variables. We
then say that we are imagining the EULER variables.

What is the fundamental question we must ask? In the theory that we just developed,
where one considered that question to be either the question of defining the elements of
force, etc., or, conversely, that of determining the position (M), we encountered the

" In this conception of the infinitely slow deformation of a medium, which is analogous to the reversible
transformations of thermodynamics, we have defined the external force and moment, the effort and
moment of deformation that one may qualify as static, and then the work done in passing from (My) to (M),
and, consequently, we obtain the notion of the energy of deformation, which is placed beside that of action,
which we started with.
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functions x, y, z,t,a’,-+,y" of xo, yo, 20, or of xq, Yo, 2o, ¢ that are defined by (66), (67), or
by (66),(67"). Imagine that one solves equations (66) or(66") with respect to xo, yo, Zo;
one has:

(68) X0 = Xo(x, y, 2), Yo =Yo(x,, 2), 20 = 20(X, ¥, 2),
or
(68") X0 = xo(X, y, 2, 1), Yo = Yo(x, ¥, 2, 1), 20 = 20(x, ¥, 2, 1),

and, substituting these in (67) or (67"), we have:

(69) a=a(x,y,z), a' =a'(xy,z2), a"=a"(x,y,2),
or
(69" a=a(x,y,z,t), a' =a'(x,y,z,1), a"=a"(x,y,z,1).

We presently know the functions xo, yo, 20, @,c',---,y" of x, y, z, or of x, y, z, ¢, and,
conversely, by solving (68), (69) or (68),(69")one will then pass to (66), (67) or to
(66"),(67").

However, one must complete the statement that must be made by observing that in
either case it may be convenient to introduce the auxiliary functions.

If we imagine the case of LAGRANGE variables, it may happen that the functions x,
v, z do not figure in the question explicitly ") it may therefore be convenient to introduce
the first derivatives of x, y, z with respect to xo, yo, zo, Or with respect to xo, Yo, 20, t as
auxiliary variables (*). In this case, by imagining x, y, z,a,a',---,y",one may also

introduce the translations and rotations &, ..., ri, &, ..., r as auxiliary functions if only xo,
Yo, 20 OT Xo, Yo, 20, t figure in the givens.

If we imagine the case of the EULER variables then we may indicate analogous
circumstances in which the use of the auxiliary variables may offer advantages. First,
suppose that the hypotheses that we must consider for the LAGRANGE variables are
realized. We may preserve the indicated auxiliary functions. The only essential
difference from the preceding case resides in the ultimate determination of formulas (66),
(67) or the analogous ones, if one performs them. If we suppose, furthermore, that xo, yo,
7o do not figure in the question then we may introduce the derivatives of xo, yo, zo With
respect to x, y, z or with respect to x, y, z, f as the auxiliary variables.

Following these indications, one sees that there may be some use for the equations
that served as the point of departure since they were presented in a convenient form from
the standpoint of the auxiliary functions. One observes that this goal is already attained
by the equations that we previously obtained, in which the auxiliary functions &, ..., ri, &,
..., r already figure.

' This is what normally happens if one starts with results like the ones given in our exposition and if one
does not modify the expressions of force, etc., by virtue of the formulas (66), (67) or (66"),(67"); indeed,
the letters x, y, z do not figure explicitly in W.

* These auxiliary functions are actually coupled by relations that are easy to form; the same remark applies
in general. They are not introduced in hydrodynamics, where the auxiliary functions are derivatives with
respect to just the variable # (and where the use of these auxiliary functions is often limited to the case of
introducing the EULER variables).
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71. Expressions for &, ..., r; (or for &, ..., r;, & ..., r) by means of the functions
X0, Y0, 20,,a -+ ,y" of x, y, z (or of x, y, z, 1) and their derivatives; introduction of the
Eulerian arguments. — From the explanations that must be given, it results that it may be
useful to have expressions for &, ..., r;or for &, ..., r;, & ..., r, which are evaluated, no
longer in accord with formulas (66), (67) or (66),(67"),which suppose that xo, yo, zo Or
X0, Yo, 20, ¢t are independent variables, but in accord with formulas (68), (69) or
(68"),(69"), which introduce the functions xo, yo, z0, ¢, &’,-+-,y" of x, y, zorof x, y, z, t.

We think about the case in which ¢ figures in a general manner. The formulas
obtained give, in particular, the case in whichx, y, z, @,c',--,y" are independent of z. By

virtue of (66),(67"), the quantities &, ...

are calculated by the formulas (1):

E=a 0x +a' 9y +a" 02 , &= a@+a dy a”@,
p, ap, p, dt dt dt
ox ' ay y 0Z " dZ
70 = + + , n=p— —
(70) R el vt /jdt dt L
o ox oy ay oy 0z _ dx Q Y @
& yap,. 4 ap, 4 ap,.’ S dt 7 dt 7 dr’
-y, 9 _ 9 %__ dy
p; Zyap,. Z/japi’ Zy DB o
ay ap da
71 =Ygt =- /. a =- —
(1) 4=, vy h¥% o 9T > o
da s dp
7= — = X = —==> a—,
' Z/japi 0p, Z/j dt

(in which o = x0, 02 = Yo, 03 = 20), and these are calculated by means of xo, yo, 20,
a,a',---,y" and their derivatives with respect to x, y, z using formulas (68"),(69").
To that effect, we shall show that the quantities &, ..., r;, & ..., r, which will

henceforth be called Lagrangian arguments, are simply expressed by means of the
following auxiliary functions, which we call Eulerian arguments:

E)=alEl+aln]+a’lc,], (&) - %

(72) (77[)=ﬁ[§,’]+ﬁ/[77,’]+ﬁ”[gi]a (77 -
’ ’ a 3
) =7E1+yIn1+71c], ()= ’;

! We use the habitual notations for the derivatives with respect to t. (See e.g., APPELL, Traité de

Mécanique, T. 111, 1* ed., pp. 277).
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(p)=alpl+allgl+a’lr], (p)= Zy— - —Z/f

(73)  4(q) = Blp1+Blg1+ B'Ir], <q>—2a—“ Ejaf

(r.) =ylp.1+ylg;1+y'Ir1, (r)=2/a’§= _ZQE

in which we have set:

00. . )
AP [.1= L1, [c,1="£x,

_N, 98 _ N p97 _N, 98 _ N p97 _N, 98 _ 5 507
[pI]—Z}fax Z/J’ax,[ql] Z}/ay Z/J’ay, 1] Z}’az z/jaz’

with analogous formulas for [p:], [¢2], [r2], and for [ps], [g3], [3] that are obtained by first
changing 7, B into ¢, y, and then into 3, ¢, and we employ the well-known notations (')
a 8/3’ ad }/

ot ot ot
We differentiate relations (68") successively with respect to the LAGRANGE

variables; they become four systems of three equations that, by virtue of notations (70)
and (72), one may write:

(75 &(E) +m(m)+ &G =1,  §& +n(m) +&&) =0,  ( rk),

(§)+§(§1)+77(771)+§(§1) =Oa
(76) () +&(&,) +n(,) +¢(s,) =0,
(©)+&5(&) +n(;) +5(5;) =0.

By virtue of the preceding relations (75) (as well as things that result from formulas
(78) given before), the last three relations (76) may be written:

(5) + 51(5) +§2(77) +§2(§) = Oa
(76") ) +1,(E) +n,(1) +15(5) =0,
©)+5(E +s,(m) +55(5) =0.

Once we solve equations (75) and (76), we observe that we may replace these
systems with equivalent systems that are obtained by differentiating relations (66") with
respect to the EULER variables x, y, z, f successively, and which, by virtue of notations
(72), may be written (upon multiplying by &,a’,a" and adding, etc.).

' See APPELL, Traité de Mécanique, T. 111, 1" ed., pp. 277.
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dx 0x ox
“—Z(fi)api, ﬁ_z(ni)a_,q’ }’=Z(gi)a—pi,

! "= a_y - ay "_ ay
(75") a _Z(é-‘,»)api, B Z(m)—api, B z(g")_ap,.’

n_ ﬂ r_ ﬁ "_ ﬂ
a —Z(&)api, y z("")ap,.’ y Z(s‘,»)ap,

i

to which we adjoin (76"). By multiplying system(75") by &,c'," and adding, etc., it may
also be written:

zgl(gl) = la 25,(77,) = Oa zgl(gl) = Oa
(75") 2mE)=0, Y m@)=1, Yn(5)=0,
zgi(gi)=0’ zgi(ni)=1a zgi(gi)=1'

Once again, observe that the following form, which implies (75), is intermediate
between (75") and (75), and ultimately results from formulas (70) combined with (75) and

formulas (74):
a=YEEL B=2nlE). v=2clE],
(75" a'=Y &) B =2mnl. B =Yclnl,
a'"=Y Elcl, r'=2nlal. r'=2clsl

One sees that the Lagrangian arguments are functions of only the Eulerian arguments and
conversely (at least as far as translations are concerned).

First determine the Lagrangian arguments by means of the Eulerian arguments. Let A
denote the determinant:

51 771 g] a( ) a a/ a//

A= n, & which is &, if |8 /5/ /))// -1
a(xoay(),ZO) f ”
53 773 §3 }, }/ }/

Let&,n.¢!.& .1m,.65,5,1.65 be the coefficients of the elements of the determinant

A, i.e., the minors given a convenient sign, which therefore amounts to setting:
& =165 =155 M =65 -65, si=&n-&m,, ...

Upon solving equations (75) with respect to (&), (), (&), (&), (n), (£, and then
substituting in (76), one obtains:
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& _ S +mm+ gt
(5[)_ A/, (5)_ / A/ /a
(77) (77,»)=%, (77)=—§§2+77;72+§§2,
N _EE +mm; + s,
()= A (€)= A ;

Conversely, determine &, 7;, &, & 1, £ as a function (&), (7, (&), (8), (17), (£). We
observe that the determinant whose elements are A(&), A(7), A(&) is the adjoint

. ) 1 ) .
determinant (1) of A, in such a way that we must let Zdemgnate the determinant:

| &) @) )
(78) Z= (&) (1) (5
(&) (13) (53)

Solve formulas (75) and (76) with respect to &, n;, &, & 1, £ Upon designating the
coefficients of the elements of the determinant (78) by (£)),()),(<!),they become (*):

E=AE), E=-M©EE)+mE)+()NENDY,
(79) n, =A®m), 1n=-A(E)m)+ @) +()m)}s
i =A), ¢=-M©E))+)+ ()}

We now propose to determine the rotations.
Differentiate relations (67") with respect to x, y, z, t. While always employing the

well-known notation for derivatives with respect to time, we have (3):

da _ da 0x, N da dy, N da 9z,

ox dx, o0x dy, dx dz, 0x ’

' This adjoint determinant is the square of A.

? The first nine formulas of (79) ( = 1, 2, 3) are true if one considers the known consequences of the theory
of adjoint determinants. It is clear that all of the present calculations may be attached to the theory of forms
and to that of linear substitutions.

da Ja
> We distinguish — from — ..., consistent with the notation employed by APPELL, Traité de
dt ot
dx dy dz
Mécanique, T. 111, pp. 277. As for xy, Yo, 20, we do not need to introduce —L ,—0 ,—0 ,since they are
dt dt dt

zero. One observes that the present xo, Y, zo, t are functions of x, y, z, ¢, which, when equated to the old x,
Yo, Zo, define functions x, y, z that are thus implicit functions. We shall return to this point later.



216 THEORY OF DEFORMABLE MEDIA

da  da ox, N da dy, N da 9z,

9

a_y ox, dy dy, dy 9z, 0z
da _da 0x, N da dy, N da 9z,
dz dx, dz dy, dz 0z, 0z
da  da ox, N da dy, N da dz, da

ot ax, ot dy, ot 9z, ot dt

9

9

n

with analogous formulas for the cosines £,y,---,y".
The formulas (74) then give:

[p]=D plE] [pd=D qlE],  [ps]=D nl&],
AEDNAUAL [9,1=Y q,[n.]1, AEDNAUAR
[n1=> pils], [r,1=> gl [r1=> rls],

and, using formulas (72), formulas (73) give:

P) =2 p(E). () =2a:(E). ;)= r(&),
(q1)=zpi(77i)a (q2)=zq,'(77i)a (q3)=zri(77i)a
(80) (r1)=zpi(§i)a (r2)=zpi(§i)a (r3)=zpi(§i),
(p)=pi(&)+ p,() + p5(S) + p,
(@) =q,(&) +q,() +q;(5) +q,
() =nr@+nm+nr)+r,

which give us the latter Eulerian arguments (p;), (g:), (i), (p), (¢), (r) by means of the
Lagrangian arguments (it suffices to replace (&), ... with their values).

Conversely, to obtain the latter Lagrangian arguments p;, ..., we may solve the
system (80), but one may also directly differentiate the relations with respect to xo, yo, 20,
t successively; we have:

da _da ix  oady  oa
ox, 0x dx, dy dx, 0z 0x,
o aaax+a_aa_y+a_aﬁ,
dy, 0x dy, dy dy, 0z 0z,
o aaax_l_a_aﬂ_l_a_aﬁ,
0z, 0x 0z, Oy 0z, 0Z 0zZ,

da _dadx dady dadz da
dt  ox ot 9y ar oz ot ot

After taking (70) into account, relations (71) then give us:
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P = (p1)§1 +(611)771 +(I’1)_§1,
(81) q, = (p)& +(g,)n, + ()5,
n = (p3)§1 +(CI3)771 +(r3)§1a

which one may write in the intermediate form:

ox ay 0z
=[P+l 4 ]
Py Py ox, q, ox, 1 ox,
0x ay 0z
=[p,1—+lq,] +[r]—,
q, )2 ox, 2 ox, 2 ox,
ox 0 0z

B o=y 4 gy 2+ [,
0x, 0x, X,

217

with analogous formulas for ps, g2, r2; p3, g3, r3 that one obtains upon changing &, n1, &,
into &, 1p, &, and then into &, 733, &, or upon changing x into yo, and then into zo; one

has, moreover:
p=(p)E+(q)n+(r)s +(p),
81) q =(py)&+(q,)n+(r,)s +(p),
r=(p;)& +(q)n +(r;)s + ().

72. Static equations of a deformable medium relative to the Euler variables as
deduced from the equations obtained from the Lagrange variables. We have already
performed the passage from the LAGRANGE variables to the EULER variables in the
context of the statics of deformable media. It will suffice for us to complete the results so

obtained (*).
We found formulas such as the following in sec. 53:

Ap . = A+ A+ A, Ag. . = P+
D ax, Ay, - 9z 1 0x,
Ap =2+ 24, g Ag, = 2p+ g Dp
0x, ay, 0z, 0x, 0 0z,
Ap, = Ba s Ba By Ag, =2 Py
0x, ay, 0z, 0x,
in which one has:
Al=aaW+/jaW+yaW, R=aaw+ﬁ
agt 877, agl apl

' We then seek to obtain the definitive results directly.
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Suppose that W is expressed by means of the arguments (&), (7)), (&), (p), (q), (ri),
and set:

W=AQ.

By virtue of the formulas (77) of the preceding paragraph, one will have:

W09,
a&, a&,
w02
877, 8771
W _ N2,
¢, a¢;

QF - A{E . 9(&)},

1

1

9,

i

Qg = A{g—g +Q(s))

i

and, as a result, since A does not depend on p;, g, ri:

&

Upon differentiating relations (75) with respect to &, one gets:

(&) an;) (s )
0E +1]; 0E + Y -(&)),
from which, one deduces:
a(&;)
0, T Y
)
a—é-'i_ &)
i)
g (&)
and then, by the relations (80):
a(p;)
IE
a(q;)

d&,

A=A aaQ+/3’aQ +yaQ+Q[§,.]
afj an, ¢,

P =A a— /3’— @ .
op, aq, ar,.

Q) = A{j—g . Q(m)},

!

(é:k a(n,) a(sy,)
5 JE, 1 9, T &,
&
A— &)E),
ni__
A )&,
Si (- \(E )
A (€ )(&));

)5

=0

i= ),
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a(rj)
o8

=-(p)(S;),

with analogous formula for the derivatives with respect to i, G. If one sets:

0Q 0Q 0Q
Ay 2 By - ch=22
) (&) (5 a(n,) ) a(s;)
0Q 0Q 0Q
Py 92 R)=2
(l) a(p;) @) a(q;) (&) a(r;)

then one has:

L=

A
~[{EX(AD + (7,)(B)) + (¢ HCDHE T+L(ENR) + 7,)(Q)) + (6)(RD P, ]

+{(ED(A) + (17,)(B;) + (6 NCHIET+{(ENP) + (17,)(Q;) + (6 )R} P, ]
+{(ED(A) + (17,)(B;) + (6 NC)HET+{ENP) + (17,)(Q5) + (6 )R 511

By virtue of the formulas (72), (73), (74),(75"),and upon letting [A;], [B:], [C]; [Pi],
[Qil, [R:] denote the components relative to the axes Ox, Oy, Oz of the two vectors whose
components with respect to the axes Mx',My' ,Mz' are (A)),(B)),(C})); (P),(Q)),(R]),one
deduces the following three formulas:

Po =Q-YIAlET- D (PP,

Py = -2 BIEI-Y [Q]1lp],
p. = - [CIET-D [R]p].

with analogous formulas for B;, C;, and pyy, pyy, Py, Pxz» Pxz> Pxz - One then has:

1 0Q 0Q 9L
Z3=a%§%um+““amo+@ﬂam}

TR A RS

aQ e Q ) ag}
apy) gy A

+/J’{(§,») Q Q ag}

+ y{(&)

and, again taking (75"), into account, we obtain the following three formulas:

G = o P1] + BIP2] + AP3],
gyx = A O1] + ALO-] + N O5],
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Gz = d[Ri] + fIR:] + ARs],

with analogous formulas for Q;, R;, and q.y, Gy, G2y, Gxzy Gxzr Gz

73. Dynamical equations of the deformable medium relative to the Euler
variables as deduced from the equations obtained for the Lagrange variables. — We
have also performed the passage from the LAGRANGE variables to the EULER
variables in the context of the dynamics of the deformable medium. We shall first
complete the results so obtained.

A; is augmented with:

>

{a @), gE 6(5)} Q| {a o), 590 a(p)} 0Q
&, a7, dg; | (&) a&; a7, dg; ) a(p)
+{aa(m+ PLON 6(77)} 00 +{aa<q>+ i) | a(q)} 00
9§, a7, ag,; | a(m) a&; a7, ag; | 9(q)
+{a 0S) , 536, a(g)} 00 +{a o), o) 30| 02 }
08, " am, " ag, Jao) | eg T an, 7 ag, ot

however, from (76) and (80):

ag & __ & __
SE P &), s, (&)@, oE, (&)©),
Ip) _ Ip) _ Ip) _

0E (P&, oz, (P, Py (P(©),

with analogous formulas, in such a way that if we set:

0Q2 0Q2 0Q2
Ay=Z2, (B)=—=, (C)=—,
“) (&) ) v) © 9(5)
0Q2 0Q2 0Q2
Pr = ’ = Rr -
) a(p) ©) a(q) ) a(r)

then we must add

A, A(p, AD,

respectively, to the given values of A; ,i =1, 2, 3, that were given in the last paragraph,
where we have set:

—% = (ANIE 1+ (B)IE 1+ (CHIE T+ (P)HIp, 1+ (@) p, 1+ (R ps].
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The expressions that we add to the values of py, pxy, px:, of the preceding paragraph are
therefore:

é 0x 0x 0x é ﬂ a_y a_y
A{(&) o, +(n) o, +(5) azo}’ A{(&) o +(n) o, +(5) azo}’

A 0z 0z 0z |
Z{@ o, +(n) o, +(5) o }

however, from the values (76) of (€),(n),(C), one has:

&) a‘”‘ + () a‘”‘ +(©)- o =—§2(§>——n2(m>ﬂ—g2<gi>a—x

Xo Yo 2o

d dy
(é—')axyo+<n>ay0+<g> =—§Z(§>—— Z(m)——gZ( >
(r;-')a‘f +<n>a"’y +<g> =—§Z(§>——n2(m>——g2< >—

i.e., by virtue of formulas (75") :

O i)™~ _as+ py+ o),
0x, ay, 0z,
O )2 e )2 - e+ i),
0x, ay, 0z,
0z 07 0z " " "
O )L LB o e+ ey,
0x, ay, 0z,

in such a way that the expressions that we must add to the p.., px, p.. of the preceding
paragraph are:

_Adx _Ad _Ad&
Adt’ Adt’ Adt’
One will have analogous expressions for p,y, ..., p.,... by the obvious change of A

into two analogous expressions B and C that are deduced by reducing the [&], [p:] by the

corresponding quantities 7], [¢:] and [&], [ri].
We now introduce the notations A, B, C; we show that they are identical to the

notations introduced in the Lagrangian theory:

Indeed, one has:
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A 0E)  Ln 0D ()
<" {(A) 0e HE) +(R>a§}

ﬁ{(A)a(g:) } {(A)a(é-‘) }

However, from formulas (76) and (80), one has:

&) _ _ 9 _ _ 9Q) __
Y &), y: &), Py (&),
Ip) _ () _ ) _ _
—ag (p)s _a§ (p,)> PP (P3)s

and analogous relations for 7, £. By virtue of relations (72), we obtain:
A ! ! ! ! ! !
A (A& 1+ (B)IE 1+ (CHIE T+ (P)p 1+ (@)p, 1+ (R)ps].

Similarly, for the P, Q, R of the Lagrangian theory, namely:

one has, by virtue of the relations (80):
P ! ! !
A a(P)+ p(Q)+y(R),

Finally, consider the modification that must be made to the formulas of the preceding
paragraph in order to have the g, ... relate to the actual case of dynamics.
The quantities that we have called P; are augmented for i = 1, 2, 3, either by:

ey ey ap) 0@, 1, el 00
A_(P){a o ny PP an} (Q){ o }+<R >{a " }

A (p'>{aa(p>+/f’(1’>+y"’(”>}+(Q'>{az(_‘1>+..}+(1ef>{aa(”+.-}

L ap, 0q, or, P> ap,
A (pf>{af’(l’>+ﬁf’(1’>+yf’;1’>} © ){ a<q>+_,}+(R,) ai’;rh..}
L P3

ap;

ap; 0q, r
or by

A a(P) + B(Q) +r(R)}
Am{a(P) + Q") +y(R)}
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A{a(P) + B(Q) +7(R)},
by virtue of formulas (80). One sees that these increases are:

P&, P(n, P(D.

The expressions that must be added to the values of g,., gxy, gx; of the preceding
section are thus:

P ox 0x 0x
Z{@ o, + (1) o, +(5) o2 }

Pl oon® ol Pl 0, 0
A{(&) axo+(77) +(5) e } A{(&) axo+(77) ayo+(§) GZO},

9y, 0

i.e.,
P P ! ! ! P ”n n n
—X(a§+/o’n+yg), — (s By, —y (s By,
or finally
_Pax _Pdy _Pd&

Adt’ Adt’ Adt’
One will have analogous expressions for g, ...; g.., ... by changing P into Q, and then
into R.

74. Variations of the Eulerian arguments deduced from those of the Lagrangian
arguments. — With the aim of directly formulating the Eulerian equations that relate to
the deformable medium, we shall calculate the variations of the Eulerian arguments. We
commence by deducing the variations from the Lagrangian arguments in order to verify
them, and then we calculate them directly.

If we apply O to equations (75) then they become three systems like the following
one:

&S &) + mdm) + GA&) = - (5)0& - (1) om - (&) 0%,
SAE) + mdm) + LA &) = - (5)0& - (1) 02— (5) 05,
& &) + mdm) + GA&) = - (5)0& - (m)oms - (8) 0% .

Hence, keeping relations (77) in mind:

- &&) = (& (&)0& + (m)om + (&) 061} + (&(5)061 +...} + (&1 (&) & +...}
= (£)D(E)OE, +11) Y (£)on, +(c))D (§)5,,

or, upon replacing &, dn;, 65 with their values, and taking relations (75") and (80) into
account:
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!

00" loke 90 , ,
; LH(E) ; NES - x+<p2>(5z—<p3>«5y}

Xo Yo <o

6(51) = (771)61(/_(5-1)6-]/_(51){(51)

—) {(51 Y, (&) ‘"jy () a‘zy +(py)0% - (poéz}
(&) {(51 97, &) a(jz &)° - 9% ¢ (p)d - (po«sz},

however, by virtue of equations (75") one has:

00X aéx ox 6(5'x dy 90x 0z
Z(g-') Z(é—‘) = Z(&)api e Z(é—;)a

a(S'x ,00x  ,00%
+a +a
0x ay 0z

=

b

for example. We therefore obtain the following relation:

8(E) = 170K = () —(g-a){a ajxx NPWLLLIPN ajz = (py)d% - <p3>«5'y}

dy

90" ,90" , 00"
—(m){aa—jma—yym Zy+<p2>éx (poéz}

90" ,00" , 00" ,
—(g){a axZ” ayzm ZZ+<p2>éy—<p3>éxz};

in order to find &7:1), A &), it suffices to make a circular permutation of (&), (771), (&) to
replace a,a’,a" with B,8',", and then with y,y’,7", and to replace the p; with ¢; and

then with r;. One has analogous systems of formulas for X&), &), A &); A &), A1),

AG).
By means of (76) and the values for d&, o7, 6, one has, in turn:

(&) =H&6(&)+nd(n,) +g<5(§1)} {(§)0& + (771)577 + (gl)ég}
=—(§ [@—(a&ﬂm yg)——(a§+/577+ yg)—y—(a E+pn+y g)—Z

dt
+{q—<p2>§—(qzm—(rz)g}éz—{r—(p»&—(q»n—(a)g}éy]
[ doy 00" 90" 00

— )| 2L @+ ) T (@ E B y) T (@ E+ By )
| dt 0x ay 0z
+{q—<pg>§—(qon—(a)g}ééc—{p —(p)E = (g - (1)6}0%)
[ do%z 907

- d——(a§+/577+}/§)——(a§+/577+}/§)—y—(a E+p 77+y§)—



Euclidian action from the Eulerian viewpoint 225

+{p-(p)E= (g - ()Y ={q - (p,)E = (g, - (r,)}0}

however, by virtue of (76), relations (80) give:

P&+ (qn+ (r)E=-{p1(&) + paAn) +p3(0)},
P&+ (qn+ ()= - {q1(&) + q2(n) +g3(0)},
P&+ (gn+ (1) E= - {ri(&) + rn) +r3(0)},

from which, we finally have:

déx dx d6x dy a8k dz a8k , :
6(§>=—<§1>{ . —ﬁ . —;j ” +<q>éz—<r>éy}
_(nl){dé’y_@aé’y_ﬂaé’y_@aé’y_l_

dt dt ox dt dy dt 9z
_(gl){dé'z_@aé'z_ﬂaé'z_gaé'z

dt dt ox dt dy dt 0z

(r)dx-(p)d lz}

+(p)oy - (q)é'X}.

One will get analogous values for & #), A £) upon changing (&), (m1), (&) into (&),
(1), (&), and then into (&), (75), (&).

From (80), we now have:

Ap1) = (E)Pp1 + (&) Ip2 + (&) Ips + p1A &) + X&) + p3 A &),

i.e., by virtue of formulas (75") :

5(1’1) =(611)5K’—(’”1)5J’
aol' , 00l , 0
+a

o'
+a +a + oK' - o]’
™ " . (p,) (p3)
90X ,00% , 00X , ,
—(pl){a—wt —+a —+(p2)<5z—(p3)<5y}
ox ay 0z
90" ,00" , 00" , ,
—(q»{a—y ra' g 2L +<p3>6x—<pl><5z}
ox ay 0z
007 ,007 ,007

_ g g 6, _ 6,
(n){a P +a o +a P +(p))oy—-(p,) z}

with analogous formulas for &q1), &r1), and for &p>), Kq2), Kr2); Ap3), Ags), Kr3).
We have have:

Ap) = dp + (51 + ()2 + () ps + pr1AE) + p2dn) + p3A D),

i.e., by virtue of formulas (75"),(76), and (80):
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_dol' al'dx ol'dy ' dz , ,
Y +(q)OK' - (r)dJ
dt  ox dt 0dy dt 9z dt

déx 96k d 90X d 00X d
—(p»{ TGO Ot O (@)% - (r)éy}

dt  ox dt  dy dt 9z dt
doy asydx dydy 9dyd , ,
(g S-SR ST (16— (p)o%
dt ox dt dy dt 0z dt
_(rl){déz aéz@_aézﬂ_aéz@_l_(p)é,y_(q)é,x}

dt  ox dr 9y dr oz dt

with analogous formulas for g), &r).
Now, we seek to find the formulas that must be established when one introduces the

auxiliary functions ox, dy, oz, dl, dJ, K, which are defined as before. For example, one
has:
d0x 00X 0y 6§Z+8_a§,x+%§,y+8_}/§,z,
0x 0x 0x ox  0x 0x 0x

and analogous expressions for aaﬂ ,aaﬁ ,from which, we have the system:
X o0x

dox | 9y 9% _ ajxx +[p,10Z~[p;10Y,

o +a
0x 0x 0x
aox 0 , 007 90" ) .
pOO | 00 30 _00Y 1 15k~ [p,10%,
0x 0x 0x 0x
aéx /a " aéZ aélZ ! !
4 +y éyﬂ/ = +[p 16y -[p,10x,
0x 0x 0x 0x

and analogous systems for the derivatives with respect to y and z. One has similar

formulas that relate tod1',0J',6K" and oI, &/, K. By virtue of formulas (72), and upon

ron

supposing that the determinant | &@’8'y" 1= 1, one then has:

8) 8 =51 va % o ajxj +(@le, -y, Dl
Z

dx dy
~[n,] aady +a,a(5y +a”a(5yJ+(a [E1-a'[¢, Do
0x dy 0z

a ,a /;a ! n
-lg] @ éz+a éz+a &J+(a[7yl]—a[§l])§l{,
0x ay 0z

with analogous formulas.
The value of & &) that was written on page (?) may be put into the form:
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5(E) = ~(&) {@+ ()55 - (r)éy}
_ (m){ﬂ (MO (p)é'z}

ot
¢ >{% + ()oY - (q)é'x};

however, by virtue of formulas (73) that define (p), (¢g), (r), one has formulas like the
following ones:

—ajtx+(q)(5z (r)dy = aa:x 90y | 9%

+a +a
t ot ot

9

and, as result, by virtue of formulas (72), one has:

(83)

—+lal—

5(8) = [[51 9% , ]"’a‘iy 1 "’a‘fj

.. d

a formula in which one may revert to the derivatives z, as we shall see in detail later
t

on.

By virtue of the formulas that define ox, dy, J&, JI, &/, SK, one has

+[r(q,) - B(r)1dl

X 0x

[ 94l ,00] , 00K
+a(a +a +a J+[}’(q1) B'(r)oJ
dy dy dy

5(p)) = a[a 90l e 90 e aéKj

”n aé[ /aé‘] I/ aéK ”n ”n
ta [a ta j [y"(q,) = B"(r)]o.
{[ dox a0y ( 09 ,a ,,aézJ [ 9% H
-(p) ol a +a +a|la +a +ta|la—+---
0x 0x ay dy 0z

’ adx / " aéz " a_dx
ox ax T (/j + & ay J [/j H
s ){a[}/ aaix +y 90y

a(sx y L0z [ 90 j
+a v +y +a’ly—+-||
0x ay

which, by virtue of formulas (73), may be written

" aéz
+
f51o) , 0 ,,8
—(ql{a[ﬁ BNy LN &
n aéz
+

84 O(p,) - o{a 0 | o3, r39 j +(@r]-a'lg Dol
ox ay 0z
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. a,(a L a(st  (@p ] alr DT
ox ay 0z

+a'"| a 90K +a’ 90K +a’ 90K +(alg,1-a'[p, 1)K
ox ay 0z
dox ,00x , 00X
-[p ] a +a +a
0x ay 0z
ox ay 0z
a0z , 00z » 007
-] « +a +a ,
ox ay 0z

and one has analogous results for 8(q,), ...
Finally, observe that one may write:

S5(p) = 66—(5’+ (@K'~ (P’

~(p, >[ﬁ + ()05 - (r)é'y}
ot
(4 >[f—ty+<r>ésc—<p>é'z}

e >[%+ (p)é’y—(q)é'x}

or.
5(p) =aa(51 ,aéJ v o aétK
00"
~(p) [—x+<q><5z (r)éy}
ot
-(q, )[_at +(r)0x-(p)d 'z}
aé, [ [
—(n)[—ﬁ(p)éy—(q)éx}
ot
or finally:
90l 98]  , 9K 90 0y 90z
85 O(p) = - - - ,
(85) (p) aat +a P +a P [p] P [q,] P (7] o

. . .o.od
a formula in which one may also revert to the derlvatlvesz. One has two analogous
t

formulas for &q), &r).
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75. Direct determination of the variations of the Eulerian arguments. — We
suppose that one subjects the functions x, y, z of xo, yo, 20, # to the variations dx, dy, oz.
Consider the relations that one obtains by differentiating relations (68") successively with
respect to the LAGRANGE variables; from this, we deduce:

o1+ o1+ 0 1416172 1122 4161 9% <

9P, 90 90, 90, 9P, 9P,

however, one has:
ddx I dx N adx dy N dox az

dp, ax dp, dy dp, Iz dp,
a0y _ ddy 0x N a0y dy aéx dy
0p, 0x dp, Ay ap, 0z ap,
a§z=a§zax+a§zay 90z az_
0p, 0x dp, 0dy dp, 0z ap,

if one substitutes the values of these derivatives into the preceding expression then one

has:
ﬂ{é[é—‘ +[E 6_(5x+[ ]a‘sy 61 }
9P, dy 0z

90y aéz}

+[s;]

+a—{6[77, +[§ y +[77,] P, P

1

<

d 6z
+—{<5[§ +[’§ +[77,] éy+[§,»] }=O;
00, 0z 0z 0
the parentheses in this latter equality are thus null, and one has:

SIE ] =—{[§ +[n,]""5y+[g,.]""5z},
dy o)

<

oln;1= —{[é‘ =+ [77,] i +[g,] }
dy dy ay
_ e 9% 90y
dlg;1= {[é’,»] Py +[n;] Py +[§,] . }
Similarly, we have:
dx dy dz dody doz
0(&)=-—10[&§]-—0 -—0 - :
& 0 (£ ] 7 (77, ] 0 (<] [51 —[n,] 0 (<] 7

upon replacing d &1, o m1], [ &i] with the values that we must obtain they become:
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5(5)-@{[5 9dr | ] +lc,) iz}

0
aéy
{[«;-' 17 +1e1? . }
+—{[§ +[77,]a§y+[§,»]a§z}.
0z 0z
—[é—'ld—&—[ 190 4.
dt dt

with analogous formulas for &77), ). To retrieve the formula that we obtained in sec.
74, it suffices to remark that one has:

dox doxdx ddxdy doxdz 0ox
—+ — + —+

dt  ox dt 9y dt 9z dt ot
dyx=8(5y§+a(5yﬂ+a(5y£+a(5y,
dt ox dt dy dt 0dz dt ot
d§z=a§z@+a§zﬂ+8§z@+8§z;
dt ox dt dy dt 0z dt ot

but we will not use the formula on page (?) and its analogues in what follows. Indeed, it
is convenient to observe only the domain of integration of the integrals over x, y, z, which
we consider to depend on ¢, in the case in which x, ¢, z, ¢ are the independent variables,
and not revert to the integrations over x, y, z, and ¢, as is the habitual custom (as with xo,
Yo, 20). If one must integrate by parts with respect to ¢ then one must introduce the
auxiliary variables xo, yo, z0, and use only derivatives with respect to ¢ that take the
form% ,which will necessitate the use of formulas such as the one that wrote above for
&E).

The calculations that must be done in order to obtain &p;), Aq:), Xr), Ap), Aq), Ar),
like the ones that lead to expressions for A &), A7), &), A5, An), KAL), presently rest
upon formulas that we just obtained for [ &], d 7], A &]. The transformation that the
expressions Ap), {q), &Ar), which were given in sec. 74, must be subjected to in order to

o . . d .
put the derivatives with respect to ¢ into the form—,is the same as the one that we

dt
indicated for & &), A7), {&).

76. The action of deformation and motion in terms of Euler variables.
Invariance of the Eulerian arguments. Application to the method of variable action.
— The action of deformation and motion becomes:
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.[jz .[ .[ J;O Widx,dy,dz,dt,

in which W is a function of xo, yo, 20, t; &, %i» G, Pi» qis i & 1, &, p, q, 1.
From formulas (79) and (81),(81"), one may also say that W is a function of xo, yo, Zo,

1. (&), (1), (&), (), (g0, (r2); (&), (1), (9, (). @), (1), and,, if one sets (1):

oY
A

then the preceding action may be written:

.[ B .[ ”.S Qdxdydzdt.

The integration over x, y, z is taken over the medium S, i.e., over a domain that varies
with time.

One may also see how one can arrived at this latter action independently of the
former. Indeed, the Lagrangian arguments are, as we saw before, Euclidian invariants;
however, since the Eulerian arguments are uniquely functions of the Lagrangian
arguments, from formulas (77) and (80), it results from this that they are also Euclidian

invariants,; furthermore, one may establish this in a direct manner by means of formulas
(82),(83) and (84), (85), by setting:

ox = (a1 + wz — wy)dt,
oy = (b1 + wsx — anz)dt,
0z = (c1 + awny — apx)dt,
ol = w6, o = wdt, oK = ws0ot.

From this, it results that one is directly led to give the following form to the action of

deformation and movement in terms of the EULER variables taken over the interior of
the surface S, and during the time interval between instants #; and #,:

.[ - .[ ”.S Qdxdydzdt,

in which the function Q has the following remarkable:

Q(XO’ Yo, 20, I; (é)’ (771')’ (é.l)’ (pi)’ (Qi)’ (ri); (5)3 (77)7 (5)’ (p)’( Q)’ (I’))

Consider an arbitrary variation of the action of deformation and motion in the interior
of a surface (S) in the medium (M), and the time interval between the instants #; and #,,
and, to that effect, give the x, ... the variations dx, ...

' We suppose that A is positive and therefore equal to Al
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For the moment, write the integral in the form:

.[jz .[ .[ J;O Wdx,dy,dz,dt,

its variation is:

JIIL, a0+ Qanydv,dy,dzr,

or:
[°[]] oo+ Q%A)dxodyodzodt.
However:
__9(x,9,2)
a(xo’yo’zo),
SA = (y,z) aéx (y,2) 6(5x+ d(y,2) 6(5x+
9(yo»20) 9, a(zo,xo) dy, 9(x,,¥,) 0z,
_{ 02 x93 dx  a(y.2) ax}a(sx+
0(¥y,20) 0%, 0(Z45%,) 0y,  9(X,,Y,) 07, | 0x
J90x ) 0 9%,
dx dy 0z
i.€e.,

%_ a§x+ 90y N 00z
A 0x ay 9z

and, as a result, the variation of the integral is:

[ {of 25+ 220 2% ol

The variation Q2 of Q is:

0Q = Z{@é(f) ﬁé( n;)+ } ﬁé()

in which & &), &), ..., &r) are determined by the formulas of sec. 74 and 75, in such a

way that only the derivatives with respect to ¢ in the formi are involved. We may apply

dt

GREEN’S formula to the terms that explicitly refer to a derivative with respect to one of
the variables x, y, z. As far as the terms that explicitly refer to a derivative with respect to
time are concerned, here is how we deal with them (the domain of integration over x, y, z

varies with time): let:
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{53 dh
.[l .UJ.S gzdxdydzdt,
be a typical term; if we pass to the intermediary of the variables xo, yo, zo then it becomes

.[tz .UJ. dxodyodzodt

or, on integrating by parts:

mso[é’Ah > dxydy,dz, ~ I [ Sothxodyodzodt
=[.”J. gAhdxodyodZo} jtz ”. Soh(LA)dxodyodZOdt

[m ghdxdydzl j m th Ay dzydt,

when we revert to the variables x, y, z (1).
If we let [, m, n denote the direction cosines of the exterior normal to the surface S

that bounds the medium after deformation at the instant ¢ with respect to the fixed axes
Ox, Oy, Oz, and let dobe the area element of that surface:

of " [[[@dxdydzar
= .[tz j L {Up, +mp, +np_ )ox+(p., +mp,  +np )oy+(p,_ +mp +np_)oz
+(lgq, +mq, +nq. )0l ++(lq,, +mq,, +nq.)o] +(lq,. +mq, +nq_)OK}dodt

{m[ S +—(5y+—(5z+—(51+ Q(S.]+§(5Kjdxdydz}t2

h

. P 6px L. 1dA
(e e ek

ap, op, dp. 1dB
+( Py + p”+ Py +—d—Jéy

0x ay dz A dt

0 op,
+ p”+p”+ap”'+ld—céz
0x ay dz A dt

dA .
' Here one may replace 7 by the value it derives from:
t

ddh 9 fdx) o (dy) o(de
Adt  ax\dt) oy\dt) oz\dt)
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+ —+
0x ay dz A dt
dq. 9dq, 09q..

A s +ld—Q+
0x ay dz A dt

dx dy

0z

d dq,. 9 1dP
qxx+ q}_l_ qzx+_d

aQXZ + aq)'z + aqzz +ld_R+
A dt

Py =Py

ZX_pXZ

Adt Adt

Bdx Ady sl indydzar,
Adt Adt

in which we have set, following the notations of sec. 73:

~(ANE 1= (B)IE,1-(CHI&ET-(PHIp,1- (@), 1= (R)Ips],

=(AN[n, 1= (B)In,1-(CHIns1-(P)Hlg,1-(Q)lg,1- (R)g;],

A_
~-
B _
~-
% = ~(A)[5,1-(B"ls,1- (Chle;1- (PO 1= (@)1 - (R)Ir ],
P ! ! !
F =LP1=aP)+ @)+ (R),
L _101-a'(P)+ @) +1' (R,
R ”n ! ”n ! n !
F TLP1=a" (P4 B1@)+ 1R,
o =Q-SIANE-SIPIp - 2%
XX 1 i i i Adt’
Ady
= - B 1[&]- ) ) [
Py Y IBIET-Y [01lp:] TR
A dz
= - TMETI-D[R1p.1-——
Pa DACIET-D R 1Ip:] N
Adx
= = >[A1]1-)[Pllg]-——
Py D [Al,1-) [P1lg,] N
B dy
=Q- B.1[n.1- Mg 1-==2
P, > [B1n,1->.10,1lg,] TR
B dz
= - 1.1-Y[R1g.]1-——
P, D IC A, 1-Y [R]lg;] N
C dx
= > [Alc1-YI[P][r]-—=
P DAl 1-D [PIIr] TR
C dy
= - B. 1- Nr.]-——=
P, D [B1ls;1-> 10,117 N
C dz

p. == [Clls, -2 [R]Ir]-——,

A dt
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and, in addition:

P dx

=alP, P Pl-—
qxx a[ 1]+/))[ 2]+}/[ 3] Adt,
_ _Pdy
q,. =al0 1+ plO,1+ y[0;] A
P dz

=a[R R R.1-—
qzx a[ 1]+ﬁ[ 2]+}/[ 3] Adt,

with analogous formulas for gy, gyy, G2y, Gxz, Gyzr G2z -

77. Remarks on the variations introduced in the preceding sections. Application
of the method of variable action as in the usual calculus of variations. — We used the
calculus of variations in the preceding section; it is useful to elaborate on the significance
of those formulas according to the approach of JORDAN (').

For the sake of completeness, recall the exposition of JORDAN. JORDAN sought
the variation of

S¢ dxdydz

when one supposes, on the one hand, that x, y, z are subject to variations, and, on the
other hand, that the functions that figure in ¢ are also subject to variation. From this fact,
@ is subject to two variations whose effects are added together. JORDAN successively
considered the variation due to the variation of the functions that figure in ¢, and then the
variation due to the variation of x, y, z that is juxtaposed with the preceding.

One may just as well search for the complete effect of juxtaposing the two variations
on the letters u, ..., Ugp, ... that figure in ¢. If we call these complete variations du, ...
then one will have:

5¢=a_‘p5u+...
ou

for the complete variation g of @.

Having said this, one remarks that the previously calculated variations are what we
must call the complete variations and that the calculations in the preceding section were
carried out from this latter viewpoint.

If one prefers to present things in a form that is identical to that of JORDAN then
here is what one must do. In what follows, we introduce the functions xo, Yo,
20,a,a’,-+-,y",of x, y, z, which figure explicitly and by their derivatives, at least in part.
The functions xo, o, zo of x, y, z, ¢ are the ones that must be used in the left-hand side of
(68") in order to derive x, y, z as functions of xo, yo, z0, . From this, and the fact that x, y,

z are subjected to variations ox, dy, oz, it results that these functions xo, Yo, 20 of x, y, z, t

" JORDAN, Cours d’ Analyse de I’Ecole polytechnique, 1" ed., T. 111, no. 339, pp. 533-535; 2" ed., T. 111,
no. 396, pp. 528-530.
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are also subjected to variations, which we designate (1) by (dxo), ..., and one has the
formulas:

0 0 0
0=(dx,)+ Y0 e+ x°<§y+ xoéz,
ox ay 0z

(86) O=((5y0)+ay° v+ D0 54 Vo5
ox ay 0z

9 9 9
0 = (82y) + =0 G + =0 gy + 0.,
ox ay 0z

which express that the complete variations of these function are null. The variations
(dxo), (Ov0), (0z0) that figure in the last three formulas are copied from the variations that
figure in the exposition of JORDAN, as we shall see. This remark seems to seems to
have been discussed in the considerations that were developed by C. NEUMANN in his
research (2) on the MAXWELL and HERTZ equations; it conforms, on the one hand, to
the rules of calculus that were adopted by H. POINCARE, in his memoir on the dynamics
of the electron (3), which we shall discuss later on.

As far asa,a’,---,y" are concerned, we have the variations (da), ..., in the sense of
JORDAN; however, the variations that were introduced in the preceding sections, and
which we continue to denote by J¢, ..., will be the complete variations, in such a way

that one will have:

oo = ((Sa)+a—a<5x+a—a(5y +a—a§z.
0x ay 0z

This amounts to saying that when we introduce the variations (dq), ..., in the sense of
JORDAN, we introduce, in addition, the auxiliary functions oI ',8/',0K ', which we define

in terms of (da), dx, ... by way of:

"In general, in order to avoid confusion we denote the variations that areobtained by leaving x, y, z fixed by

().

2 C. NEUMANN. — Die elektrischen Krifte, T. 11, Leipzig, 1898; Uber die Maxwell-Hertz’sche Theorie
(Abhandl. der k. Scchs Gesells. der Wiss. zu Leipzig; Math.-phys. Klasses, T. XXVII, nos. 2 and 8, 1901-
1902).

> H. POINCARE, Rend. di Palermo, Tome XXI, pp. 129 et seq. (1905), 1906. H. POINCARE uses
different notations from ours, in particular, as far as derivatives with respect to ¢ are concerned; our

notation, d, 9, which is that of APPELL (Traité de Mecanique, Tome 11, 1* ed., pp. 277), is the opposite of
POINCARE. He distinguishes the ordinary variation (d¢) of a function ¢ in the sense of JORDAN, which

d
he denotes by d—(pdg, from its variation d¢ (which we call complete), which he denotes by Z—lpée [in
£ £

particular, see the formula (11 bis), page 140].
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S'=>"y0 = r(0B) +[p,10x +[q,10y +[r,1&,
(87) o' = Zaéy = Za(éy) +[p,10x +[q, 10y +[r, 1z,
OK' =Y Boa =Y B(0a)+[p;1dk+[q;10 +[r1.

The fundamental convention is expressed by the relations (86), as one sees. It will be
found, in an eventual work on the theory of temperature, for the functions that figure by
way of their differential parameters — for example, in the case that amounts to a pointlike
medium - if one abstracts from the formulas in which the complete variations of these
functions are presented.

One will observe that presently the simplest way to perform these calculations is not
the one that was followed in the aforementioned exposition of JORDAN, but consists of
determining, as we did before, the complete variation of the function under the
integration sign. Nevertheless, in view of the comparisons that are to be performed when
one develops the two viewpoints that are suggested by the notion of temperature later on,
it will be useful to likewise follow the path of JORDAN.

We have:

®8) o [[[ Qavdydzar =[ jjj{g(éxoﬂg(éyowg(ézo)

0€2 0€2 0€2 0€2
+Z{@(é@i)%~--+@(é<n>)}+@(é<§>)+---+%(6<r>)

+ i(Qéx) + i(Qéy) + i(Qéz)}dxdydzdt,
dx dy dz

in which the () sign corresponds to the variation that is obtained by leaving x, y, z fixed,
in such a way that one has, in a general fashion:

(89) (éf)=§f—df§x—df§y—dféz.
dx dy dz

We substitute the auxiliary functions dx, dy, dz,61',6J',0K ' that are defined by the

formulas (86), (87) for the variations (dxy), ... In regard to the integration over t, we
must also recall that the domain of integration over x, y, z varies with 7, and that one may
not switch the order of integrating over ¢ and the system of integrations over x, y, z in the
habitual fashion that is employed for the variables xy, yo, zo.

If we replace (xo), (o), (7o), (A &)), ... by their values from (89), which subsumes
(86), we obtain:

(90) aj: msgzdxdydzdt=j: jﬂ{-%&-%éy—%&
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o3[ (o) - a()w e 22 @ 22 )

+ 4 (Qx) + 4 (Qoy) + — (Qéz) dxdydzdt.
dx dy dz
If we consider first

Al 1 T it

+ i(Qéx) + —(Qéy) + —(Qéz)}dxdydzdt,
dx dy dz

and then:

Ll JM {6(5) 5(E))+ } 5 o@)e-- j(f)w(r))}dxdydm,

just as, in the preceding section, we divided the sum into:

on [ ][ (aéx 0% aaészxdydzdt,

and (92), one sees that the calculation is identical to the one that we did earlier.

78. — The Lagrangian and Eulerian conceptions of action. The method of
variable action applied to the Eulerian conception of action as expressed by the
Euler variables. — In his work sur la dynamique de I’électron, which was presented at
the July 23, 1905 session of the Cercle de Palerme, H. POINCARE presented a
conception of the action for an infinite domain that was different from the one that we
envisioned up till now. If one clarifies the idea of H. POINCARE when considering a
finite domain then one is led to distinguish the following two conceptions of action, the
one being Lagrangian, and the other, Eulerian.

We may integrate the general function W or Q over the independent variables (') xo,
Yo, 20, or the independent variables (%) x, y, z in a fixed domain, and then integrate over 7.

1. Start with the space (My), and imagine that an observer attached to the reference
axes directs his attention to a portion (Sp) of that space and to the different positions that
it ultimately takes, namely: (S) at an arbitrary instant #, (S;) and (S,) at the times #, and #,.

We imagine the integral:

" In this case, we denote the function by W.

* In this case, we denote the function by Q.
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.[ - .[ ”.S Qdxdydzdt,

in which the domain of integration (S) with respect to x, y, z varies with t, and which
takes the form:

.[jz .[ .[ J.so Wdx,dy,dz,dt,

upon effecting the change of variables that is defined by (66")or (68'), in which W
denotes the expression that is obtained by replacing the letters x, y, z in QA by their
expressions in (66") , and the domain of integration over xo, yo, zo, (So) is independent of t.
We then have the Lagrangian conception of the action.

2. While always envisioning an observer that is fixed with respect to the reference
axes, imagine that he constantly directs his attention to fixed and definite portion of space
(M); let xo, yo, Zo denote the coordinates that are calculated by means of formulas (68’) at
the point M, of (My), and becomes the point M of (M), with coordinates, x, y, z at the
instant ¢, and let (Sp) be the region contained in M, that becomes (S) at the instant, ¢; we
may then let (So1), (So2) denote the regions that (Sp), which varies with ¢, becomes for the
values #; and #, of .

If Q refers to both x, y, z, and the functions expressed by the formulas(66’) then we

envision:

.[ - .[ ”.S Qdxdydzdt,

in which the domain of integration over x, y, z — namely, (S) — is independent of t this
time, and which takes the form:

.[: .[ .[ J.so Wdx,dy,dz,dt,

upon effecting the change of variables that is defined by (66")or (68"), in which the

domain of integration over x, y, z — namely, (S) — varies with t. We then have the
eulerian conception of action.

We have considered the first case in the earlier paragraphs; we shall now occupy
ourselves with the second one. Formula (88) is then replaced with the following (1):

(88" ((sj: msgdxdydzdt)=£2 I1]; g(éxong(éyoﬂg(&o)

' Upon referring to the exposition of JORDAN, one will observe that the terms

d d d
e (Qox) + . (Qd6y) + e (Q6z) come from the fact that the domain is moving, and correspond to the
x ly z

variation of the letters x, y, z, as well as the independent variables.
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0Q2 .
+Z{a(§)( 5(&))+- 6( )(5( ))} 6(5)(6(5)) a(r)(é(r))}dxdydzdt,

and, by virtue of (89), formula (90) is replaced by the following one:

(90") [5[ ”Ldedydzdt) j ”ﬂ - _d—yéy_d_z

Q2

This sequence of calculations resembles the ones in sec. 77. At the same time, a
difference was introduced as far as the derivatives with respect to time are concerned. At
the moment, one may exchange the integration over ¢ and the integration over the domain
of the variables x, y, z, and, that exchange having been performed, the integration over
time must be done by imagining that x, y, z are constant. The integration by parts over

. . o 0 d
time must be done by making them depend on the derivatives 5 and not on 5 as we
t t

did in sec. 76 and 77, and conforming to the remark made in sec.75 and 76.

The integration by parts now gives:

(o] [[[ araazar)

tz ' ! ! ' ! ! ! ' o ! !
=.[ .”.S{(lpxx+mp)x+npzx)§x+(lpx)+mp))+npz))§y+(lpxz+mpﬂ+npzz)§z
+(l'q,, +mq, +n q,.)0l +(l G, +mq, +n qzy)d] +(lq,.+mq, +nq. )6K}d0dt

{.”J.[ (5x+—<5y+—(5z+—<51 QA/(S'J+%§’Kjdxdydz}

t apxx 6px ap;x 9 A dQ
[ e s 02,

P + ap” + P +i£ EJéy

1)

h

+ +
0x ay dz Jot A dy
ap.. Op,. ap! Q

+ pxz + p)» + pzz +— a C d 62
0x ay dz ot A dz
g’ 9q,. 9 ,

+ CIx_x + q) + CIZX a - p)z _ pzy 6]
0x ay 0z 6 A :
dg.. dq’. 0

At 20 q” 20 + P = P |07
0x ay 0z 6 A
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a ! a /'7 a ! a Rl 12 !
+ q + q)' + 9z +——+ pxy — pyx 0K dXddedt,
dx dy dz  at A

in which we have set, with the notations of sec. 72 and 73:

%' - & = (A 1= (BYLET - (©1E]- (PR 1= (@)1 p] - ROLp .
%’ - = (A1 - (B, 1= (€)1 - (Pl 1 - (@lgs 1= (R)g, .
% - & = (W)l (Bl 1= (€, 1= (P15 1= (@)1 ] - (RO
%’ - L= [Pl=a(P)+ @) + ¥ (R).

2L (01- P+ FQ)+ 1R,

% - L= [RI=a'(P)+ Q)+ (R,

P = - {ANET+IPIp, 1}

Pl =-> B IE1+(0,1lp, 1}
Pl =-> {CUET+[R P, 1}

with analogous formulas for p. ,p. ,p.;p...p,. ,p. thatare obtained by changing [&],
[pi] into [#:], [¢:], and then into [&], [ri], respectively, and, in addition:

4. = alP 1+ BIP, 1+ [P,
4, =alQ1+ BlO,1+y10;1,
q,. =R 1+ BIR,1+7[R;],

with analogous formulas forq, .q,,.q.,:49..,q,.,q.. that are obtained by changing o, f, 1,

intoa’, ',y ,and then into”, B",y" ,respectively.

Observe that:
0A dA dcoA dyoA dzo A

ot A dt A dtax A dtay A dtoz A

may, by virtue of the relation:

ldh_ddc ddy 9de

Adt oxdt dydt dzdt
be written:
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_iéi_lﬁLﬁui[AV”j [Ac@j a[Ackj
A A di Adr) 9y\Adt) oz\ A di

ii’_idi_i[l”@j_i[ﬂﬂj_i[ﬂﬂj
a A Ad ax\Ad) oy\Adt) oz\ A dt)

similarly:

On the other hand, A" = A, P' = P; from this it results that one has:

P, P’ Lo A dQ p, 0Py dp, 1dA
0x ay 0z at A dr o ox ay 0z A dr’
and:

9 ’ J /vx ’
qxx + q) + aqzx
0x ay 0z

ad 99, 0 14dpP B
D q, L9, dp tp, -+ Cdy dz,
ax dy 0z A dr ' S Adt Adt

! !

+i£+
at A Py ™ Po

with analogous relations.
The force and exterior moment thus have the same definition as in sec. 62, 63.

However, the same is not the case for the effort and the moment of deformation; from
sec. 72,76, we have:

, Adx

- =q. =Q-———
, Ady

93 =P =T, = -
(93) Pp—Py, =7, A dr
po—pl em = A%

s s s Adt’

with analogous expressions for 7y, 7y, 7y; 7, 7., 7. that are obtained by cyclic
permutation of A, B, C, and x, y, z; in addition:

_ __Pax

! ! de
93 g =y =Y
93) 9y =90 =X A dr
g.-q. =z, =-L&

X X Adt

with analogous expressions for X, Xy, Xovs Xz» Xoo» Xez that are obtained by cyclic
permutation of A, B, C, and x, y, z.
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79. The method of variable action applied to the Eulerian conception of action
as expressed by the Lagrange variables. — We shall once more develop the Eulerian
concept of action with the Lagrange variables. We begin with the integral:

.[: .[ .[ J.so Wdx,dy,dz,dt,

in which the domain of integration over xy, Yo, Zo now varies with time ¢, and corresponds
to the fixed integration domain that is described by the point (x, y, z).
Following the exposition of JORDAN, we have:

of" [I[ wex,dy,dzdr
: W oW oW
.[l J'.”.so|: (_‘55 '+a—ri<5r,»j+a—§§’§+ +?§r

+iwwm»5?MWm%f$W%ﬂmmwwn

Xo Yo 4

in which (dx), (do), (Jzo) are defined by formulas (86) by means of the auxiliary
variables ox, dy, Jz.

The sequence of calculations resembles those that we encountered in the dynamics of
deformable media; at the same time, a difference was introduced, insofar as
differentiation with respect to time is concerned. This time, one may not change the
order of integrating over time and integration over the domain of variables xo, yo, z0. One
will therefore apply reasoning analogous to that of sec. 76. One first introduces only the

o . o d .
derivatives with respect to time in the form a—by using the formula:
t

OF _dF  OF 0x, OF 9y,  9F dz,
ot dt ox, ot 9y, ot Az, ot

X, ayo
or ot
of x, y, z, t that one 1nfers from formulas (66"). Upon using the notations we introduced

. . 0z
in which —2 denote the derivatives with respect to  of the functions xo, yo, Zo,

before, the preceding formulas may be written:

(94) 97 “Fwa F Lo

at X, 3y, 9z,

If one has a term of the form:

I; .U.[so g(z_l:dxodyodzodt
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then one writes:

I ”Liz—ildxdydzdt,

and, upon integrating by parts:

[l {ih} dxdydz - j | ”h [ jdxdydzdt
={j ([ ihdxdydz} j | ”h [ jdxdydzdt

1.e., reverting to the variables xo, yo, 2o:

{[” ghdxodyodzo} j [[f,ra= [ jdxodyodzodt

Having said this, from the previous formulas for the dynamics of deformable media and
from (94), we obtain, upon integrating by parts:

o[ [[[ wax,dy,dz,dr
=" ([ (Fox+G 6y ++H 8L +I'8l'+J 81 + K.0Kdo, dt
A s, 0 0 0 0 0 0 0
+{”J.S (A'é'x+B'6'y+C'6'z+P'61'+Q'd]'+R’6K’)dx0dy0dz0}t2
=[0I Kook + Y0y + 200+ Ligl + M{AT' + NyoK 'y dy,dz,di

upon setting:

aW ow
W Ne 0 2W e ';W -
S R S T
Gh%{ﬂ— —(5)—} { (W —<n)ﬂ}+ o{aW—< W —(g)ﬂ}
an, an an
H) =1 {ﬂ% W —(5)—} { —(n)—}mo{——( W —(g)ﬂ},
d¢, il
1 =1 {——(5)—} mo{——< )—} {——( )—}
6p3

e
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K, = lo{ﬂ—@ﬂ}mo{ﬂ—(n)ﬂ}mo{ﬂ—(g)ﬂ},

or, ar or, or or, or
, a (oW ow a (oW ow a | oW ow
Xo="—|"%-©& + - () + -©)—=
ax, | 9&, 9E | ay, | 0, IE ) 9z, | 0&, dE
ow ow 91w ow 0w
) PRASIRLE YA RRLS FPLLASALE
9g, n, at\ A o& dg an
, 0 [OW ow a [ oW ow a [ oW ow
e (2 ) () 2 0
ox, \ dn, on ) dy,\ on, an ) 09z, \ 91, on
ow ow 91w ow ow
1) FRAGRMLA IO KL LSS
9, ag, at\ A on & g
, a (oW ow a (oW ow a | oW ow
SRICTP AN AN (T
dx, \ 06, s ) Iy, 9¢, dg ) 9z, 9¢; ag
ow ow 91w ow 0w
+D P |+ A | — +P =G0
an, &, ot A dg an &
, a (oW ow a (oW ow a [ oW ow
L, = - + - + - (<)
d9x, \ 9p, ap ) 9y, \ 9p, dp ) 9z, \ 9p, ap
ow ow ow ow (10w ow oW W W
2 G G F A e g
or, dq,; ag, on, t\A dp or dq ¢ on
, a | oW ow a (oW ow a | oW ow
My =— - + - () + -(©)—
9x, \ g, dq ) 9y, \ 9, dq ) 9z, \ 9q, d
"'Z naW_plaW 5-iaW_é_,laW +Ai 10w +raW_paW+§aW_§aW,
p, 9 9E ' ac, atl A dg p ar T AE T oc
, a (oW ow a (oW ow a [ oW ow
MY () NEY T N
ox, \ dr, or ay, \ or, or 0z, \ ory d
ow ow ow ow 4 ow oW _oW W
+Z Di =4 +&; =1 +A— — + -q +& -n .
dq, ap, an, a&, at\ A or dq dp an &

We may observe that by virtue of (94) X, , for example, may be written:

X6=Z(a oW 9w aw}riaw+ oW aw

+Qi r, q r
Ip; 05, a¢; an, ) dt o0& ac n
_[LoA 9 e 3o
A o a'XO ayo aZO 6§

however, one has:
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1A _ (9@, 06  9()
A ot ax, dy, 0z, )

and, as a result, X, has the same value:

, J0 oW ow ow d oW ow ow
=> +q, — -, +—— b g— - —,
9p; 0&; dg;  dm; ) dr 9% ¢ Iy
as in sec. 62; the same remarks apply to Y,,Z,,L,,M,,N,. However, the same is not

true for the effort and moment of deformation; by simple transformations, one once more
recovers relations (93) and (93") of sec. 78.

80. The notion of radiation of the energy of deformation and motion. — We have
seen that the density of energy of deformation and motion, when expressed as a function
of the Lagrangian arguments and referred to the space of (xo, yo, 20), 1s:

) pogW W W oW W oW
& on g ap dq ar

this same density, when referred to the space of (x, y, z) and expressed by means of the

function Q of the Eulerian arguments (&), (7,), (&), (p:), (¢:), (r); (8), (1), (©), (p), (q), (r)
is:

oW oW oW
96 = - -
00 (5) 8(5) o )8(77) e a(s) Hp )a(p) (Q) a(Q) o )3( )

This result is obtained either by transforming expression (95) by means of the
relations that we indicated before that exist between the Lagrangian arguments and the
Eulerian arguments, or by directly repeating the reasoning of sec. 65 on the elementary
work:

d’WLO (EX o + 1Yy + &Zy + pLy + qM o + TN )dx,dy,dz,

_HSO (EF) +nG, + cH | + pl}, + qJ, +rK,)do, },

that the forces and external moments and the efforts and external moments of
deformation exert on the portion (M) of the medium that the portion (My) of the natural
state occupies at the instant z. By this latter path, we recover the expression:

dt { [ ﬁs ‘;—f dx,dy,dz, }

for the elementary work, in which € is assumed to be independent of ¢.
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If we observe that we has the following identity:

id_E_i[£j+i[ﬁﬁj+i[£ﬂj+i[£%j
Adt at\A) ax\Adt) oy\Adt) oz\Adt)

which was employed by POINCARE in the memoir that was cited in sec. 77, and which
we apply to an arbitrary function, then we arrive at the following new expression:

dt{% j j L%dxdydz
E dx E dy E dz
Ik {ax[A dtj ay[A dtj+ az[A dr ﬂdwydz}’
or:
9 cor E E( de dy d
(97) dt{5 {1, ~dxdydz + | jsx[ziﬂnﬁ djjdo},

for the elementary work.

The second integral in (97) expresses the flux of energy of deformation and motion
across a fixed surface S in the deformed body.

Now consider the Eulerian conception of action. In the preceding sections we
confirmed that the values of the forces and external moments remain the same, but that
the following terms disappear from the expressions for the efforts pyy, py, Pzt

XX =Q_é@’
A dt
B dx

Ty = ——"—»
i A dt
C dx

T, = ———,
) A dt

and the following terms disappear from the expressions for the moments of deformation
CIxx, qu, CIxz:

B P dx
XX,V__XE’
. Qudx
T Taar
B R dx
sz__xz’

with analogous expressions for the quantities ., 7y, 7Ty, T, Ty, T, and
Xozs Xoys Xyes Xexs Xoys Xez - From this, it results that the elementary work that is obtained in
the preceding must be added to a new surface integral that has the expression:
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{J-J-[l__l_ dy dzj{g__[ dx dy Cdzj
dt dt dt A dt dt dt
—{p(P) +q(Q") + r(RH Ho}:

One may call this new integral the flux of radiant energy crossing the boundary S of the
deformed body.

The reasoning made in sec. 64, which was based on the Euclidean invariance of the
action density, no longer leads to the same conclusions for the forces and external
moments as it does for the new efforts and external moments of deformation. This may
be interpreted by saying that the new efforts and moments of deformation no longer
satisfy what POINCARE called the principle of reaction. This latter conclusion is
likewise recovered, as one knows, in the electric theory of LORENTZ. However, the
existence of radiation that we just showed permits us to approach the efforts and
moments of deformation 7., 7y, ..., X, Xpx» ... as being what MAXWELL, from
considerations deduced from the electromagnetic theory of light, and BARTOLI, from
those of thermodynamics, called the pressure of radiant energy, and one may therefore
retrieve the principle of reaction.



IV.-STATICS AND DYNAMICS OF DEFORMABLE MEDIA.

48. Deformable medium. Natural state and deformed state. — The theories of the
deformable line and the deformable surface that we discussed lead, in a very natural
manner, to envisioning a more general deformable medium than the one that is habitually
considered in the theory of elasticity, and seems, to us, to achieve the goal that was
pursued by LORD KELVIN and HELMHOLTZ in the theories of light and magnetism.

Consider a space (My) that is described by a point My, whose coordinates xo, yo, 2o
with respect to three fixed rectangular axes Ox, Oy, Oz. We may regard these coordinates
as functions of the three parameters pi, 0., 03, which are chosen in an arbitrary manner;
however, to simplify, we suppose that these coordinates are taken to be independent
variables. Affix a tri-rectangular triad to each point M, of the space (M), whose axes

M x,,M,y,,M,z, have direction cosines &, ,c,,ay;By.Bq-Bas YosVe»Ye With respect to
the axes Ox, Oy, Oz, and which are functions of the independent variables xo, yo, zo .
The continuous three-dimensional set of all such triads M x;y;z, will be what we call

a deformable medium.

Give a displacement MyM to a point My; let x, y, z be the coordinates of the point M
with respect to the fixed triad Oxyz. In addition, endow the triad M x,y,z, with a
rotation that will ultimately bring its axes into agreement with those of a triad Mx'y'z’

that we affix to the point M. We define that rotation by giving the direction cosines
a,a\a";B,B8.8" v,y ,y" of the axes Mx',My',Mz' with respect to the fixed axes.

The continuous three-dimensional set of all such triads Mx'y'z" will be what we call

the deformed state of the deformable medium under consideration, which will be called
the natural state in its original state.

49. Kinematical elements that relate to the states of the deformable medium. —
For ease of notation, we sometimes introduce the letters o1, 02, 03, instead of xo, yo, zo In
the sequel, as expressed by the formulas:

Xo = 1, Yo =, 20 = 2,

so it will suffice to keep them in mind.
Denote the components of the velocity of the origin My of the axes M x,,M,y,,M,z,

with respect to these axes by £”,n",c” when p; alone varies and plays the role of
time. Likewise, let p!”,q'”,r'” be the projections on these axes of the instantaneous
rotation of the triad M x;y,z, relative to the parameter o; . We denote the analogous
quantities for the triad Mx'y'z" by &, m:, &, and p;, g, r; when they, like the triad
M ,x}y,z, are referred to the fixed triad Oxyz.

The elements that we introduced before are calculated in the usual fashion; in
particular, one has:
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0x , dy , 0Z
=a +a +a , =—
b o, ap, I, -2 o 6/0, 2 & 6/0,
dx , dy s 0Z 60{
43 = + + , 44 a——=— —_—
@ m=r I, & p; / p; @ -2 6/0, "0,
ox ,dy 0z d
Si=y— Yy, =Yl b
9p; 9P, 9p; 6/0, 90;

The linear element of the deformed medium (M), when referred to the independent
variables xo, yo, zo, 1s defined by the formula:

ds® = (1+2¢&)dx; +(1+2¢&,)dy; +(1+2¢,)dz;
+2y,dy,dz, + +2y,dz,dx, + +2y,dx,dy,,

in which ¢, &, &, y1, 12, y3 are calculated by the following double formulas:

’ 0z ’ e ) -
N -
82:5( j (ayoj (ayoj }5(52-“72"'52—1),
) 83=%(f’zoj (azoj (a@j }%@5*’7%55—1),

ox ox dy dy oz

4 * + = 5 5 +1,1;, +6,55,

1 ayo 0z, Iy, 9z, 9y, 97, 253 N/ ,$3
ox dx dy dy 0z 6

72 0z, dx, 9z, dx, 0z, 0x, = && + 1031 + 636
0x o0x dy 9y 0z 6

= + + = + + .
Y3 o oy, ax, oy, ax, ay, & +mm, +6.5,

Denote the projections of the segment OM onto the axes Mx',My',Mz' by x',y’,z’, in

such a way that the coordinates of the fixed point O with respect to these axes become
- x',-y',~z'. We have the following well-known formulas:

! ! !

(46) & - grany =0, g -k =0, g - py e gy =0,
op 9 9

i i i

which gives new expressions for &, #;, & .
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50. Expressions for the variations of the velocities of translation and rotation of
the triad relative to the deformed state. — Suppose that one endows each of the triads
of the deformed state with an infinitely small displacement that may vary in a continuous
fashion with these triads. Denote the variations of x, y, z; x',y',z; a,a’,--+,y" by &, oy,
0z, ox',0y',07; da, 0, ,0y", respectively.  The variations Ja,dc',---,0y" are
expressed by formulas such as the following:

(47) da = BOK' - ydl',

by means of the three auxiliary functionsdl’,d/',0K’, which are the components of well-
known instantaneous rotation that is attached to the infinitely small displacement in
question with respect to Mx',My',Mz'. The variations dx, dy, ¢z are the projections of the

infinitely small displacement felt by the point M onto Ox, Oy, Oz. The
projections d'x,0"y,d'z of this displacement onto Mx',My',Mz' are deduced immediately

and have the values:
48) Ox=&"+7'0J' -y OK', Sy=0y'+x0K'-7'0l', 67z=0+y'0l'-x'd]".

We propose to determine the variations &&, o, 0&, dpi, Oqi, O felt by
&, ni, &, pi, qi, 1, respectively. From the formulas (44), we have:

I, = Z(%é}f + y%}

9P, 9p;
ay a0y
=D | ——da+a——|,
% Z(api ’ aap,»j
da doa
or, = —p+p—|.
" Z[ap,» / ﬁap,»j

Replace da by its value BoK' - ydJ', and da',---,8y" with their analogous values; we
obtain:

49)  op, =(zi+qi(5K'—ri(5J’, 5, =Zﬂ+ri(5[’—pi(5K’, 5, = 2K

i i i

+p,dJ' —q,dl'.

Similarly, formulas (46) give us three formulas, the first of which is:

a ' ! ! ! !
égi = aéé +q,07 —1,0y +7'8q, — y'or,.

1

Replace dp;, dqi, Or; with their values as given by formulas (49); we obtain:
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o0&, = niéK’—gid]’+?+ q,0x-r0Yy,

(50) on, =¢,0l' - 0K’ +<?9(5_y +r0y-p,oz,

1
!

égi = gié]/_niéll+%+ piélz_qt'élx’

1

in which we have introduced the three symbols 6'x,8"y,d'z defined by formulas (48).

51. Euclidian action of deformation on a deformable medium. — We preserve the
notations of sec. 49 and introduce the known quantity, A, which is defined by the
formula:
ox dx  ox
ox, dy, 0z,
__D(x.y.,z) _|dy dy dy

D(x,,y,,2,) |0x, 9y, 9z,
dz dz 0z

ox, dy, 0z,

and whose square, which is formed by the rule for multiplication of determinants, is
expressed as a function of &, &, &, 1, y2, 73 by the formula:

1+2¢ 7, Y2
N =]y, 1+2¢, 71
V2 V1 1+2e¢,

Consider a function W of two infinitely close positions of the triad Mx'y'z’, ie., a
function from xo, yo, 20 to x, y, z, &, B, p,a',B',y",a",B",y", and their first derivatives

with respect to xo, yo, z0. We propose to determine the form that W must take in order for
the integral:

j ” Wdx,dy,dz,,

when taken over an arbitrary portion of the space (My) to have null variation when one
subjects the set of all triads of the deformable medium, taken in its deformed state, to the
same arbitrary infinitesimal transformation of the group of Euclidian displacements.

By definition, this amounts to determining W in such a way that one has:

W =0,
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)

when, on the one hand, the origin M of the triad Mx'y'z' is subjected to an infinitely small
displacement whose projections dx, dy, ¢z on the axes Ox, Oy, Oz are:

o =(a, +w,z-w,y)ot,
(51) oy =(a, + wy,x —w,7)0t,
0z =(a; + W,y —w,x)ot,

where a1, az, as, @i, @, w; are six arbitrary constants and ¢¢ is an infinitely small quantity
that is independent of xo, yo, zo, and when, on the other hand, the triad Mx'y'z’ is

subjected to an infinitely small rotation whose components along the axes Ox, Oy, Oz are:

wot, wdt, wiot.

Observe that in the present case the variations 0&;, o, 6&; dpi, dq;, or; of the eighteen
expressions &, #i, &; pi, i, i are null, since this results from the well-known theory of
moving frames, and as we may, moreover, verify immediately by means of formulas (49)
and (50) by replacing 6'x,08'y,8'z;61',6J',0K' by their actual values. It results from
this that we obtain a solution to the question by taking W to be an arbitrary function of xo,
Yo, 20, and the eighteen expressions &, #;, &; pi» qi» ri. We shall now show that we thus
obtain the general solution (') of a problem that we now pose.

To that effect, we remark that the relations (44) permit us to express the first
derivatives of the nine cosines a,a’,---,y" with respect to xo, yo, Zo by means of these

cosines and p;, g;, r; using well-known formulas. On the other hand, formulas (43) permit
us to think of expressing the nine cosines a,a’,---,y" by means of &, 7, &, and the first

derivatives of x, y, z with respect to xo, or by means of &, 1, &, and the first derivatives
of x, y, z with respect to yo, or, finally, by means of &, 73, &, and the first derivatives of
x, y, z with respect to zo. Furthermore, it is useless in this case for us to make any
hypothesis on the mode of solution because it is clear that we will not obtain a more
general form than the one that we started with by supposing that the function W that we
seek is an arbitrary function of xo, yo, Zo and x, y, z, and their first derivatives with respect
to xo, Yo, 20, and of &, n:, &; pi, i, ri, Wwhich we indicate by using the notations p; = xo,
= Yo, 03 = 20, by writing:
ox dy 0z

W=W 'axa aZa_a R
(p’ "0, "ap, ap,

,5,»,77,»,5,»,19,»,61,»,13}

Since the variations 0&, on;, 8&; dpi, &q;, Or; are non-null in the actual case one remarks
that there is an instant, which we shall ultimately describe, for which we have, by virtue
of formulas (51), the new form for W for any a;, az, a3, o, an, ws :

"In all of what follows we suppose that the medium is susceptible to all possible deformations, so that, as a
result the deformed state may be taken absolutely arbitrarily.
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aW§x+aWéy+ (5Z+z ow ax ow 66)} ow éaz _o.
0x ay 0z aﬂ 9p; aﬂ 90; aﬂ 9p;
90, 9P, 9P,

We replace dx, dy, oz with their values (51) and (5— 0—— 9y (5— with the values
0o, 0o 9P
that one deduces by differentiation. We set the coefficients of a1, az, az, @, a», ws; we
obtain the following six conditions:

Wy W, W,
ox ay 0z
> a?/ az_a?/ v |_o > axg/ ax_a?; 2| _,
90 9P, 90 9P,
z ow ay_ oW ox _0
X dp, 5 dp |
90 9P,

which are identities, if we assume that the expressions that figure in W have been reduced
to the smallest number.

The first three show us, as one may easily foresee, that W is independent of x, y, z
The last three express that W depends on the first derivatives of x, y, z with respect to xo,
Yo, Zo only by the intermediary of the quantities ¢, &, €3, 7, )2, ;5 that were defined by
the formulas (45). Finally, we see that the desired function W has the remarkable form:

W(xo, Yo, z0, &, mi, Ci; pi» qi, 1),

which is analogous to the one that we encountered before for the deformable line and the
deformable surface.

If we multiply W by the volume element dxodyodz, of the space (Mo) then the product
Wdxodyodzy so obtained is an invariant in the group of Euclidian displacements that is
analogous to the volume element of the medium (M).

Just as the common value of the integrals:

msl Al dx,dy,dz, .

j j L dxdydz,

taken over the interior of a surface Sy of the medium (M) and the interior of the
corresponding surface S of the medium (M), respectively, determines the volume of the
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domain bounded by the surface S. Likewise, if we associate, in the same spirit, the notion
of the action for the passage from the natural state (My) to the deformed state (M) then we
add the function W to the elements in the definition of a deformable medium, and we say
that the integral:

”LO Wdx,dy,dz,,

is the action of deformation for the interior of the surface S in the deformed medium.
On the other hand, we say that W is the density of the action of deformation at a point
of the deformed medium when referred to the unit of volume of the undeformed medium,

w . . . . .
and that TAT is the density of that action at a point when referred to the unit of volume of

the deformed medium.

52. The external force and moment. The external moment and effort. The
effort and moment of deformation at a point of the deformed medium. — Consider an
arbitrary variation of the action of deformation of the interior of a surface S in the
medium (M), namely:

S[f[ Walx,dy,dz,
oW oW oW oW . oW . aW
= J.J-LOZ(aa o8, + o on; + oc s, + o, op, + » oq, + or érijdxodyodzo.

By virtue of formulas (49) and (50) of sec. 50, we may write:

W : L S
o I, Walsydyodz, =IILOZ{3_§(77,»(5K -5 +a_p,.+q,»6z—néy)
+Z_W(5‘f<51’-§ﬂ51<'+?ﬂ+m—p,.a'z>
+Z_W(§id],_niél,+%+pié,y_qié.,?()

1 1

+M(ﬁ+q,(5K,_WJ+ﬂ(ﬂ+¢,I_piéKfj

1

ap, \ ap, g, i
K/ 12 !
+ﬂ &+ p,0J —q, 0l |rdx,dy,dz,.
ar; \ 90

We apply the GREEN formula to the terms that explicitly refer to the derivative with
respect to one of the variables o1, 02, p3. If we let [y, mo, ny denote the direction cosines
with respect to Ox, Oy, Oz of the exterior normal to the surface Sy that bounds the
medium before deformation and the area element of that surface by dy then this gives:
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ow ow |,
(5”_[ Wdx,dy,dz, = ” { 0E +m, oE, +n, 0, X

ow ow ow |, ow ow ow |,
+| [, +m, +n, oy+|1, +m, +n, 0z
an, 017, 017, as, g, ¢,

+| [,

ap,

+(l0 W, m, W . n, aWjéK’}dao
or, or,

or,

M5

9 oW oW awﬂ,
+7, - D, Oy

oW ow ) ., oW ow oW ) .,
+n, Jé[ + (lo +m, +n, Jd]
) ap; dq, dq, 99,

+

ap, an, ' IE b g,
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b

b

9 oW oW oW |,
+ z + p; —dq; éz
Ip; s, an; 0
.\ 2 9 oW ‘e oW . oW o oW —5,» oW |5
0/0; 0p; or,; 0q; g, a7, ) |
9 oW oW oW oW _ ow)|.,
- Z =P+ =& oJ
ap, 9q;  Ip, ar, &, ;)|
. 2 9 oW . oW —61,» oW s oW . W ) |sg dx,dydz,.
ap, ar, aCI, ap, (977[ agt
Set:
14 oW oW 14 oW oW
F)=l,—+my—+n,—, I =1, ——+m, —+n, —,
a&, a&, 08, p ap, p;
, oW oW oW 14 oW oW
G, =1, +m, +n, , Jo=ly,—+my—+n,—
an, 017, 077 0q, 0q, 04,
H(')=lan+man+nOaW, K(’)=lan+man+nOaW
95, g, 0g; on or, ory

X! =Z{ 9 aW+qi aW_riaW}

ap, 0 ac. A&

v - z{a ow 'aW_p'aW}

ap, oy, aE  Piac
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apl agz 6771 ag,
9 oW oW oW 77aW aw}

, 9 AW W oW
ZO=Z{ +p—-q }

L’ = + -7 + -
°meqw Vg, Mo, han,
Mé=Z 0 6W+rlaW_pi6W+iaW_§laW
Ip; 9q;  Ip; o &, IS,
, Jd oW ow ow ow ow
NO = Z + pi - CIi 5{ - 771 ’
apt art aqt apt a i agt

we have:

(5”];0 Wdx,dy,dz, = HS (F)ox+G.oy+H.07+1,0l' +J 0]+ K,0K )do,

- ”L (XX +Y. 8y +Z,07+ Lol + M.OJ' + N.OK "dx,dy,dz, .

If we first direct our attention to the triple integral that figures in the expression
foro .[ -US Wdx,dy,dz, then we call the segments that have their origin at M and whose

projections onto the axes Mx',My' .Mz’ areX,.Y,,Z, and L,,M,,N,, respectively, the
external force and external moment at the point M referred to the unit of volume of the
undeformed medium.

Next, directing our attention to the surface integral that figures in:
S| L Wdx,dy,dz,,

we call the segments that issue from the point M and have projections -F,,-G;,-H,
and -1;,-J;,-K,on the axes Mx',My',Mz',respectively, the external effort and external
moment of deformation at the point M of the surface Sy that bounds the medium referred
to the unit of area of the surface So. At a definite point M of (S) these last six quantities
depend only on the direction of the exterior normal to the surface (§). They remain
invariant if the region in question is varied and the direction of the exterior normal does
not change, but they change sign if this direction is replaced by the opposite direction.
Suppose that one traces a surface () in the interior of the deformed medium that is
bounded by the surface (S) in such a way that (), together with a portion of surface (),
uniquely circumscribes a subset (A) of the medium, and let (B) denote the rest of the
medium outside of the subset (A). Let (Z) be the surface of (Mj) that corresponds to the
surface (S) of (M), and let (Ag) and (By) be the regions of (My) that correspond to the
regions (A) and (B) of (M). Mentally separate the two subsets (A) and (B). One may
regard the two segments (-F,,—G,,—~H,)and (-1,,-J;,-K,) that are determined by the
point M and the direction of the normal to (Zo) that points towards the exterior of (Ap) as
the external effort and moment of deformation at the point M of the frontier (X) of the
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region (A). Similarly, one may regard the two segments (F,,G,,H;)and (I;,J;,K;) as
the external effort and moment of deformation at the point M of the frontier (X) of the
region (B). By reason of that remark, we say that -F,,-G,,-H, and-1,,-J,,—-K/ are
the components with respect to the axes Mx',My',Mz' of the effort and moment of
deformation that are exerted at M on the portion (A) of the medium (M), and that
F,,G,,H, and,,J,,K, are the components with respect to the axes Mx',My',Mz' of the
effort and moment of deformation that are exerted at M on the portion (B) of the medium

(M).

The observation made at the end of secs. 9 and 34 on the subject of replacing the triad

Mxyz by a triad that is invariantly related to it may be repeated here without
modification.

53. Various ways of specifying the effort and moment of deformation. — Set:

A=Wy W W

eg T g T ag
poW oy W W
ap; 9q; or,;

A',B/,C/ and P.,Q/,R' represent the projections onto Mx',My',Mz' of the effort and
moment of deformation, respectively, that are exerted at the point M on a surface that has
an interior normal at the point M, that is parallel to the coordinate axis Ox, Oy, Oz that
corresponds to the index i before deformation. Indeed, it suffices to recall that one has
already agreed to replace the letters xo, yo, o, which correspond, by this notation, to the
indices 1, 2, 3, respectively, with o1, 0o, p3. If you recall, that effort and moment of
deformation are referred to the unit of area of the undeformed surface.
The new efforts and moments of deformation that we define are related to the
elements introduced in the preceding section by the following relations:
F, =1,Al +myA, +n,A;, I, =1,P'+m,P, +n,P,,
G, =1,B/ +m,B, +n,B,, J, =1,0 + m,0, +n,0;,
H,=1,C +m,C, +n,C;, K,=I,R +m,R,+nyR;,

0A!
Z —+q,C; _’?B;j_ X, =0,

0B’
Z _l+riAi, - piC;j_Yol =0,
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P/

Z a—’+q,»R,»' - 1,0/ +n,C; _§iBiIJ_L(,) =0,

00!

Z a_Ql"‘riPil_ PR +5 A _giC;J_M(; =0,
P

OR'
E a_l + piQiI - qz'Pi"" giBi, - UiAi'J - N(; =0.
0

i

We propose to transform these relations into ones that are independent of the values
of the quantities that we calculated by means of W that figure in them. Indeed, these
relations pertain to the segments that are attached to the point M to which we gave the
names. Instead of defining these segments by their projections on Mx',My',Mz',we may
define them by their projections on the other axes; the latter projections will be coupled
by relations that are transforms of the preceding ones.

Moreover, the transformed relations are obtained immediately if one remarks that the
original formulas have simple and immediate interpretations (') by the adjunction to these
moving axes of axes that are parallel to them at the point O.

1. We confine ourselves to the consideration of fixed axes Ox, Oy, Oz. Denote the
projections of the external force and external moment at an arbitrary point M of the
deformed medium onto these axes by Xo, Yo, Zo, and Ly, My, Ny, respectively, and the
projections of effort and moment of deformation on a surface whose interior normal has
the direction cosines [y, mg, np before deformation by Fy, Go, Hy and Iy, Jo, Ko,
respectively. The projections of the effort (A',B/,C/) and the moment of deformation
(P,Q/,R)) are denoted by A;, B, C; and P;, Q;, R;, respectively. The transforms of the
preceding relations are obviously:

F, =1,A +myA, +n,A,, I, =1,P +m,P, +n,P,,
G, =1,B, + m,B, +n,B,, Jo =1,0, + m,0, +n,0;,
H,=1C +m,C, +n,C,, K,=I[R +myR,+nR,,

0A, | 0A, 04,

-X, =0,
ox, dy, 0z,
B B, 0B
81+62+ 2 -Y, =0,
ox, dy, 0z,
aC
6C1+8C2+ s _7. -0,
ox, dy, 0z,
P, 0P, 0P
61+62+ 3+Clay+Czay+C3ay—BlaZ—BzaZ—B3aZ—LO=0,

ox, dy, 09z, 0x, ay, 0z, 0x, 0x, 0x,

' An interesting interpretation to note is the analogy with the one given by P. SAINT-GUILHEM in the
context of the dynamics of triads.
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d
90, +8Q2 + o, + A 9z +A, 9z + A, 9z -C, ox -C, ox -C, ox -M, =0,
ox, dy, 0z, 0x, ay, "0z, 0x, 0x, " ox,
R R, OR
R, L ORy (R (g 0% g X g 0% 4 g 4N N o,

ox, dy, 0z, 0x, ay, 0z, 0x, 0x, 0x,

relations that are the three-dimensional generalizations of the two-dimensional equations
of LORD KELVIN and TAIT.

2. Now observe that we may express the nine cosines a,a’,---,7" by means of three
auxiliary functions; let 4;, A2, A3 be three such auxiliary functions. Set:

D oydf == pdy =w\d +wydh, + widA,,
Dady = =Y yda = xidh + x,dA, + xidAs,
D Pda ==Y adff = 0ydA +0ydA, +04dA;.

The functions @/, x/,0, of A1, A, A3 so defined satisfy the relations:

aw aw—[/ ! ! ! O
_ -t o.-y.o =0,
oA ox,  KOITA
ax' 9y
X om0l =0, (i,j)=1,2,3.
04, aﬂj ! !
ao_j ao-ll w_/ ! w_/ ! —O
A, A, X @ik =T
and one has:
, 04, , 04, , 04,
P, =0, +w, +w, >
9p; 0 90,
, 04, , 04, , 04,
q, = X, + X, + X —> (or xo = P1, Y0 = P2, 20 = 03)
o, oap, “ap,

JOA L, 0A, 0,
r=0—+0,—+0, .
9P, 9P, 90;

Let @i, i, o denote the projections onto the fixed axes Ox, Oy, Oz of the segment
whose projections onto the axes Mx',My' ,Mz' are @], x,,0!; we have:

Za'da” = —Za"da' =w,dA, +w,dA, +w,dA,,
dd'da ==Y ada" = ydA + x,dA, + xydA,,
D ada' ==Y a'da =o0,dA +0,dA, + 0,dA,,
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by virtue of which (1), the new functions @;, y;, o of 41, A2, 43 satisfy the relations:

07, 9@, _ o o
A, oA, X% = X%
iy, dx,
-Zli-ow -ow, (i,)=1,2,3.
A7 )
90, _ 390, =w w
0%, 0A, K = Wik

Again, we make the remark, which will be of use later on, that if one lets
OAi, 042, 043 denote the variations of A;, A», 43 that correspond to the variations
oa,oa -+ ,0y" of a,a',--+,y" then one will have:

o' =w 0\ +w,0A, +w;0A,,

A" = 310 + 2,00, + X300,

OK' =0,0A, +0,0A, + 0,04,

Ol =adl' + o]+ yOK' =@, 0A, + w,0A, + w,0A,,

o =a'0l' + O]+ yOK' = y,04, + x,0A, + 04,
0K =a"0l' + B'0]"+y'0K' = 0,04, + 0,0, + 0,04,

in which dI, &J, SK are the projections onto the fixed axes of the segment whose
projections onto Mx',My' ,Mz'are 6l',0]',0K'.
Now set:
1, =ZD’1’I(; +X1’J(; +01,K(; =wl,+xJ,+0K,,
Ty =ZD';I(; +X£J(; +O'£K(IJ =w,l,+ x,J, +0,K, ,
Ky =@l + )3 J o+ 0Ky =@, 1, + 0., + 03K,
[0 = wl’L(; +)(1’M(; + O'llN(; =L+ M, +0,N,,
/\/{0 =ZD’1’L(; +X1IM(; +O'1IN(; =w, L, + M, +0,N,,
No =ZD’1’L(; +X1’M(; +O'1’N(; =L, + M, +0,N, .

In addition, we introduce the following notations:

! ! ! ! ! !
Hi =w1Pi +X1Qi + OlRi = wlpi +X1Qi +01Ri’

" These formulas may serve to define the functions @, y;, g;, directly, and the substitution is defined by:
@ =aw +fy +yo’,

x =aw + By +yo’, (i=1,2,3)

n_r " __r

o =a'g' +BY +y'o.
i i i i
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/%Y Y !

X, =@,P + 0,0, +O,R, =@, P + x,0, + O,R,,
' DY "'p!

2, =wF + 0,0, + O3R, =@ P, + 4,0, + 0,R,,

then, instead of the latter system in which either P,Q/,R’or P;, Q;, R; figure, we have the
following:

Iw, , ax, , [ o0] ' '
—L-P + -0 +rw| - R | —+p.x, —qw
4) z |: t{ap ql 1){} Qz(ap pl j z[ap[ pz)(l QI lj

apl i i
+ A,' (Xlg,' - 0'1/77,') + B,'/(O'llg,' - wfgi) + Ci/(wllni - Xllgi)]’

with two analogous equations. If one remarks that the functions &, n:, &, pi, qi, ri of

A, o, Ay, S 3% 0%

give rise to the formulas:

oo, 0p, o,
35 p, 0w, , ,
0 =0, ——=——4+q.0, -1 X,
d g d
aZ’ o' § —w' 5 =0, _aj]{ ax’ +rw -p; o,
J J
ag , or, do, , ,
+@’ £ =0, — =L v —q @,
oA, = X8 o1, " ap, +pXi— 4,0,

that result from the defining relations of the functions @/, x;,0/, and the nine identities
that they verify, then one may give the preceding system the new form:

L, = Z /95, B»'%—C,»'%—B'%—Q;%—R;ﬂ
6/00 M A ax oA oA oA

b

with two analogous equations.

3. The preceding equations that we introduced also constitute the generalization of
the ones we developed in an earlier work (‘). We may transform them in such a way as to
obtain the generalization of the well-known equations of the theory of elasticity that
relate to effort. To that effect, it will suffice to reproduce the method we already
employed in the work that we mentioned.

To abbreviate the writing, let X,,)),Z, and £;,M;, N, denote — for the moment —

the left-hand sides of the transformation relations, which refer to Xy, Yo, Zo, Lo, My, No,
respectively, and observe that one may summarize the twelve relations that we
established by the following:

' E. and F. COSSERAT. — Premier mémoire sur la théorie de 1’élasticité; Annales de la Faculté des
sciences de Toulouse (1), 10, pp. I} — 1116, 1896.
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[[[ oA+ 30 + 20, + Lot + Mgty + Ny ey dz,

- .”{(Fo —lyA —myA, —nyA) A +(Gy = 1,B, —myB, —n,B;)A,

+(H,-1,C, -m,C, —n,C))A, +(, -1,P, —-m,P, —n,P,)u,

+(Jy = 1,0, - myQ, —n,0;)u, + (K, —1,R, —myR, —n,R;)u;}do, =0,

in which A;, A», A3, w1, wo, w3 are arbitrary functions and the integrals are taken over the

surface So of the medium (M) and the domain bounded by it. If we apply GREEN’S
formula then the relation that we wrote becomes the following one:

.”.J(XOA’I +YoAy + Zo Ay + Lopty + Moy + Ny )dx,dy,dz,
- .”(Fo)“l +Goly + HoAy + Lopy + o, + Kouy)do,

A A A A A A

+”‘I A—+A —+A—+B—-+B,—>+B,—>
0x, ay Tz 0x, ay © 0z

0 0 0 0 0 0

A A A

C,—>+C,—2>+C,—= |dx,dy,dz,
ox, ay, 0z,

d d d d d
.[J-.[ ALll l +Pf; ALll + Ql ALll + Q2 ‘le + Q,; ‘le
Vo 02, ox, ay, "0z,

d d d

R, “ R, “ ) R, e dx,dy,dz,
ox, ay, "0z,

d d d d d d
_”.[ c, 2 +Czay +0, 2 +BlaZ +BzaZ +B3aZJuldx0dy0dz0

Xo Yo <o Xo Yo <o

d d d d 0 0
—.U.[ A, < + A, < + A < +C, al +C, al +C, al u,dx,dy,dz,
ox, ay, 9z, 0x, ay, "0z,

9 9 9 a a ad
—.U.[ B, Gl B, Ty B, Gl A Y A, Y A, J usdx,dy,dz, =0.
ox, ay, 9z, ox, ay, S0z, )

We seek the transform of this latter relation when one takes the functions x, y, z of xo,
Yo, 2o for the new variables. If one lets @ denote an arbitrary function of xo, yo, zo that
becomes a function of x, y, z then the elementary formulas for the change of variables are:

dg _dg ox  op ay op o
ox, Ox dx, OJy dx, 0z axo
o _dg ax g dy | ag oz
dy, ox dy, Iy dy, 9z Ay,
dg._dg ox g oy  op oz
0z, Ox dz, dy dz, 0z 6Z0
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Apply these formulas to the functions A, A, A3, w1, to, 3. With S always denoting
the surface of the medium (M) that corresponds to the surface Sy of (M), we further
denote the projections onto Ox, Oy, Oz of the external force and external moment applied
to the point M by X, Y, Z, L, M, N, which are referred to the unit of volume of the
deformed medium (M), and the projection onto Ox, Oy, Oz of the effort and the moment
of deformation that are exerted at the point M of S by F, G, H, I, J, K referred to the unit
of area on §. Finally, introduce the eighteen new auxiliary functions p.x, pyx, Pzx, Pxys Pyys
Pzy» Pxz» Pyz> Dzzs Gxxs Gy Gaxs Gxys Qyys Gays Gz Gyzr Gz bY the formulas:

Apxx=Alax+Azax+Agax, Aqxx=Plax+Pzax+Pgax,
0x, ay, 0z, 0x, ay, 0z,

Ap = AL A, DA g = P, Y
Xo 0 0 0x, 0 9z,
0z 0z 0z 0z 0z 0z

Ap. =A + A + A
pzx laxO 2 ayo 3 aZO

and the analogous ones that are obtained by replacing:

Al, AZ, A3, pxx; pyx; pzx; Pl, PZ, P3, QXx; ny; qu

with:

Bl, BZ, B3, pxy; pyy; pzz; Ql, QZ, Q3, qu; ny; qu;
and then by:

Cl, CZ, C3,pxz; pyz; pzz; Rl, R2a R3a QXZJ quJ qzzi
respectively.

We obtain the transformed relation:

”_[(XAI +YA, + ZA, + Lu, + Mu, + Nu,)dxdydz
—“.(F)L1 +GA, + HA, + Ty, + Ju, + Kuy)do

A, A, A A, A, A,
+ +p,. +p, +p., +p., +p,,
m(pxx ox Py FPa T P P P

d X Z

oA oA oA
+p.—+p,—+p, — |dxdydz
Coox oox Coox

au, ou, ou, i, i, i,
+ +q,, +q., +q., +q., +q.,,
”J.(q” ox D dy 7 0z Lo "ax T dy 1 0z

0 0 0
+q. Hs +q, Ay q. Hs dxdydz
C0x oox ©0x
_.”-J.{(p)z - pz_\’)ﬂl + (pzx - pxz)ll’tZ + (pxy - p)x)ﬂB%Xdde = 0,

in which the integrals are taken over the surface S of the medium (M), and the domain
bounded by it, with d o designating the area element of S.
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Once more, apply GREEN’S formula to the terms that refer to the derivatives of
A, Ao, A, s, o, 1z With respect to x, y, z, and let [, m, n denote the direction cosines of
the exterior normal to the surface S with respect to the fixed axes. Since A, A, 43,
U1, W, us are arbitrary, they become:

F=Ip_ + mp,. +np_, I=Ilg + mq, +nq.,
G= lpxy +mp  +np_, J = quy +mq, +nq.,
H=Ip, + mp,. +np_, K=Ig, + mq,. +nq._,
0 op,., 9

Puc | Por P _x -0,

0x ay 0z

Py + Py + Py -Y =0,

0x ay 0z

0 o, 0

pxz_l_ p)»_l_ pzz_Z=0,

0x ay 0z

0 dq,., 0
q + q) + qzx + pyz _ pzy - L= 0,
0x ay 0z

dg.. 0dg.. 0qg..
T + Ty + o +p,-p.-M=0,
0x ay 0z '

ag. 9q,
CE Dy + M=, Py —Py—N=0.
0x ay 0z

The significance of the eighteen new auxiliary functions py, ..., Gxr, ... results
immediately from the relations that we just found. Indeed, it is clear that the coefficients
Dxx> Pxy» Dxz Of 1 1n the expressions for F', G, H represent the projections onto Ox, Oy, Oz of
the effort that is exerted at the point M on the surface whose exterior normal is parallel to
Ox, and that the coefficients g.., ¢, g of [ in the expressions for I, J, K are the
projections onto Ox, Oy, Oz of the moment of deformation at M relative to the same
surface. The coefficients of m and of n give rise to an analogous interpretation in regard
to surfaces whose interior normals are parallel to Oy and Oz.

The auxiliary functions that we just introduced and the equations that relate them do
not appear to have been envisioned in a form that was that general up till now; to our
knowledge, they have been considered only in the particular case in which the nine
quantities g, ..., g.; are null, and the first work to treat that question seems to be that of
VOIGT (V).

' WALDEMAR VOIGT. — Theoretische Studien iiber die Elasticititsverhdlisse der Krystalle, 1, 11,
Abhandlungen der koniglichen Gesellschaft der Wissenschaften zu Gottingen, Bd. 34, 1887. The first
section, entitled: Ableitung der Grundgleichungen aus der Annahme mit Polaritit begabter Molekiile, has
49 pages (3-52), the second one, entitled: Untersuchung des elastische Verhaltens eines Cylinders aus
krystallinscher Substanz, auf dessen Mantelfliiche keine Krdfte wirken, wenn in seinem Innern wirkenden
Spannungen lings der Cylinderaxe constant sind, is 48 pages (53-100). One may likewise consult the
work of VOIGT: L’Etat actuel de nos connaissances sur 1’élasticité des cristaux (Report presented at the
International Congress of Physics convened in Paris in 1900, T. I, pp. 277-347), in which he alludes to
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In conclusion, we observe that if one performs a change of variables in the six
equations that involve X, Y, Z, F, G, H in such a fashion as to introduce the original
variables xo, yo, zo then one immediately finds equations whose first three constitute the
generalization of the equations that were established by BOUSSINESQ.

54. External virtual work. Theorem analogous to those of Varignon and Saint-
Guilhem. Remarks on the auxiliary functions that were introduced in the preceding
section. —We give the name of external virtual work on the deformed medium (M) for an
arbitrary virtual deformation, to the expression:

6T, = -HSO (F)0'x+G,0'y + H\0'z+ 1,61 +J,6J' + K. 0K )d o,

+ ms (XX +Y. 8y +Z,87+L.0 + M. + N.,OK "dx,dy,dz, .

We refer to the notations of sec. 50, and let J, &J, JK denote the projections onto the
fixed axes of the segment whose projections onto Mx',My',Mz' are &l',6J',0K’, in such

a way that one has, for example:
-0l =a"6a' + B'OB +y'0y' = —(a'da" + BOB" +yOy"),

upon always supposing that the axes in question have the same orientation.
This being the case, suppose as in sec. 53 that one gives the arbitrary functions A,
A2, A3, i, o, us the significance defined from the formulas:

M=, =0y, =&, =0, w=23a), us=70.

We then see that the previously-obtained relations between the auxiliary functions that
we introduced serves only to express the following condition:
When any of the virtual displacements in sec. 50 are given to the deformed medium

the external virtual work Jd7. is given, either by the relation:

d0x d0x 00x a0y a0y a0y
071, =- - tpPy—+P—+DPy——*tDPy—tD,
‘ HJ. (p” o D dy P 0z Po "o TP dy P 0z

0 0
+D, 90 +p,. % +p, % dxdydz
- Ox )Y 0z

Gt —

_.”-J- ﬁ_l_ G_(SI_I_q a0l 2oJ 2oJ 2oJ
qu ax qu ay X aZ Xy ax yy ay aZ

POISSON, Mém. de I’Acad., T. XVIII, pp. 3, 1842 (see pp. 289). Also consult LARMOR, On the
propagation of a disturbance in a gyrostatically loaded medium (Proc. Lond. Math. Soc., Nov., 1891);
LOVE, Treatise on the Mathematical Theory of Elasticity (Camb. University Press, 1" ed., 1892, 2" ed.,
1906); COMBEBIAC, Sur les équations générales de l’élasticité, Bull. De la Soc. Math. De France, T.
XXX, pp. 108-110, and pp. 242-247, 1902.
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N d0K N d0K
CIxz ax q Yz ay

+H[[[{p,. = PO+ (., - )V +(p, - p,)OK)dxdydz,

+q, 90K dedydz
-0z

where the integrals are taken over the deformed medium, or by the relation:

5T = _.UJ- A 6§x+A2 86x+& 00x +B, a0y +B, 90y +B, a0y
0x, ay, © 0z, 9%, a9y, © 0z,

+C, 00 +C, 002 +C, 90 dx,dy,dz,
ox, ay, "0z,

a4l a4l a0l adJ a0/ aoJ
~[[[lBS=+P =+ P =+0,"—+0,"—+0,
ox, ay, a7, ox, ay, 0z,
K 0K d0K
+R, 90 +R, I +R, dx,dy,dz,
ay, 0z,

9 9 9
+[[[lc W oo, D, W g 9% g 9 % sy dz,
0x, ay, "0z, 0x, dy, 0z,

d d d d d d
+”‘I A < + A, < + A < -C, al -C, al -C, al dx,dy,dz,
ox, ay, "0z, ox, ay, "0z,

a a 9 9 9
+[[]| 5, O B, B AW u D4 Y dskax dy,dz,
ox, ay, "0z, ox, ay, "0z,

in which the integrals are taken over the undeformed medium, because the formula we
gave above:

6T, =-| jso (FJo'x+G.0'y + H\0'z+ 1,61 +J.8J' + K.6Kd o,

+ ms (X[ OX+Y/ 6y +Z 87 +L.01" + M8 + N.OK "Ydx,dy,dz, .
to serve as the definition of external virtual work may also be written:
6T, =-| jso (F,0x+G,0y + H,0z+ 1,01 +J,0] + K,0K)do,

+ ”J;O (X, x+Y, 0y +Z,0" +L,0l + M ;6] + N,6K)dx,dy,dz,,
by virtue of the significance of Xy, Yo, ..., No, Fo, Go, ..., Ko, and likewise:

67, = —”S(Féx +G8y+HOz+181 +J8J + KOK)do,
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+ ”J.S (XOx+ YOy + Z0' +LAl + MJ + NOK )dx,dy,dz,

by virtue of the significance of X, Y, ..., N, F, G, ..., K.
Start with the formula:

.UJ.S oWdx,dy,dz, + 67, =0,

which is applied to an arbitrary portion of a medium that is bounded by a surface Sp.
Since oW must be identically null, by virtue of the invariance of W under the group of
Euclidean displacements with the variations given by formulas (51), namely:

o = (a1 + wz — wsy)dt,
oy = (a2 + w3z — any)dt,
& = (az + wiz — wy)dt,
and dl, &/, JK by:
ol = w o, o = wdr, oK= w0,

and from this, and the expressions for §7. on which we must insist (1), we conclude that
one has:

HSO F,do, —ms X dx,dy,dz, =0,
(I, +H,y-G,2)do, - ||| (L, +Z,y -Y,z)dx,dy,dz, =0,
So s,

and four analogous equations. These six formulas are easily deduced from the ones that
one ordinarily writes by means of the principle of solidification.

One may imagine that the frontier S is variable in these formulas.

The auxiliary functions that were introduced in the preceding paragraphs are not the
only ones that may be envisioned; if we confine ourselves to their consideration then we
simply add a few obvious remarks.

By definition, we have introduced two systems of efforts and moments of
deformation relative to a point M of the deformed medium. The first are the ones that are
exerted on surfaces that have their normal parallel to one of the fixed axes Ox, Oy, Oz
before deformation. The second are the ones that are exerted on surfaces that have their
normal parallel to one of the same fixed axes Ox, Oy, Oz.

The formulas that we have indicated give the latter elements by means of the former;
however, by an immediate solution, which we shall not stop to perform, one obtains,
conversely, the former elements in terms of the latter.

Now suppose that we have introduced the function W. The former efforts and
moments of deformation have the expressions we already gave, and one immediately
deduces their expressions in terms of the latter from this. Nevertheless, in these
calculations one may specify the functions that one must introduce according to the

" The passage from elements referred to the unit of volume of the undeformed medium and area of the
frontier Sy to the elements referred to unit of volume for the deformed medium and the area of the frontier S
sufficiently immediate that it suffices to confine ourselves to the former as we have done, for example.
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nature of the problem, and which will be, for example, x, y, z or x',y',z', and three
parameters (') A, A2, A3 by means of which one expresses a,a’,---,y".

If one introduces x, y, z, A1, A2, 43, and if one continues to let W denote the function
that depends on xo, yo, 20, the first derivatives of x, y, z with respect to xo, yo, zo on
A1, Ao, A3, and their first derivatives with respect to xo, Yo, zo, and is obtained by replacing
the different quantities &, n;, &, pi, ¢i, i in the function W(xo, yo, 20, & % &, Pi» qi> Ti»)
with their values as given by formulas (43) and (44), then one will have:

pe D g W, W
P P P

ox, ay, 9z,

Bl= a‘g/ ’ Bz= a‘g/ ’ B3= a‘g/ )
PR PEAS 9 Y

ox, ay, 0z,
¢ = -2 -2,
97 9% 9o

ox, ay, az,
)4 W )
e T an T ek
9P, 90; 90;

55. Notion of energy of deformation. Theorem that leads to that of Clapeyron
as a particular case. - Envision the two states, (My) and (M) of the deformable medium
bounded by the surfaces (So) and (S), and consider an arbitrary sequence of states that
start with (My) and end with (M). To that end, it suffices to consider functions x, y, z,
a,a',-,y" of xo, yo, z0, and one variable & that reduce to xo, Yo, 20, @, s"*Ve>
respectively, when 4 is zero, and reduce to the values x, y, z, a,a’,--+,y", respectively, for
non-zero h relative to (M).

If we make the parameter £ vary in a continuous fashion from O to 4 then we obtain a
continuous deformation that permits us to pass from the state (Mo) to the state (M). For
this continuous deformation, consider the total work performed by the forces and external
moments that are applied to the different volume elements of the medium and by the
efforts and moments of deformation that are applied to the surface elements of the
frontier. To obtain this total work, it suffices to integrate the differential so obtained

from O to h, starting with one of the expressions for d7¢ in the preceding section and

substituting the partial differentials that correspond to the increase dh in h for the
variations of x, y, z, a,a’,-+-,7"; the formula:

! For such auxiliary functions A;, A4, 43, one may take, for example, the components of the rotation that
makes the axes Ox, Oy, Oz parallel to Mx', My', Mz’ respectively.
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oT, =-| HS SWax,dy,dz,

gives the expression — .[ J.J-S %dxodyodzo for the value of §7c, and we obtain:

‘Lh (.mso%dxodyodza jdh - 5, Wi = Wo)dxydy,dz,

for the total work. The work in question is independent of the intermediary states and
depends only on the extreme states (My) and (M).

This leads us to introduce the notion of energy of deformation, which must be
distinguished from that of the action of deformation that we previously envisioned. We
say that — W is the density of the energy of deformation, referred to the unit of volume of
the undeformed medium.

The proposition that we must encounter, which determines the fotal work that is
performed by the external forces and moments, as well as the efforts and moments of
deformation that are applied to the frontier, gives CLAPEYRON’S theorem (') when we
consider an infinitely small deformation and specify the medium. Indeed, first introduce
simply the hypothesis — and we refer to sec. 58 for the more general form — that Wis a
simple function of ¢, &, &, 41, A2, A3. We may then envision the formulas:

de, ae, T 0, A,

_w
Poa,]

_aw
oA

[1]
[1]

3

as defining a change of variables that replaces the letters &, &, &, A1, A2, A3 with the
letters i, Q,, Q3, E;, 2, E3. By virtue of this change of variables, W becomes a
function W, of Ql, Qz, 93, El, Ez, 53.

Having said this, we pass to infinitely small deformations and put ourselves into the
situation envisioned in sec. 31, pp. 74-76, of our Premier mémoire sur la théorie de

I’élasticité; W and W' become quadratic forms W, of ey, ez, e3, g1, &2, g3, and W, of MV,
Mo, N3, Th, Tr, Ts; the latter is, up to a factor of V4, what one calls the adjoint form to W,.

When this is of issue, and in the case of infinitely small deformations, one obtains the
following expression for the total work:

.[ ” W,dx,dy,dz,.

" LAME seems to have been credited with making CLAPEYRON’S theorem known in his Note to the
Comptes Rendus, T. XXXV, pp. 459-464, 1852, then in his Lecons sur la théorie mathématique de
élasticité des corps solides, (1" ed., 1852, 2™ ed., 1866); indeed, it was only in the 1 of February, 1858,
that the following note appeared: CLAPEYRON, Mémoire sur le travail des forces élastiques, dans un
corps solide déformé par U’action de forces exterieures, Comtes rendus, T. XLVI, pp. 208, 1858. Also
consult TODHUNTER and PEARSON, A History of the Theory of Elasticity, etc., secs., 1041 and 1067-
1070.
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To be more specific, if we suppose that we have ('):

A N 2 2_4 4 4
W,(e;.8,) =- 5"‘# (e, +e, +e3) _E(gl + 85 + 85 —4eye; —dese —4ee,),

then we have:

W Ty L[ NEENT A NG A N N+ N TR AT+ T
ACANERS 2 2u 2u 3A+2u U R
or:
| 1+£ |
WZ/(/\/’“I)=_E ﬁ(/\/] +N2+N3)2_;(N2N3+N3-/\/’1 +./\/’l./\/’2—’]]2_’]'22_7;2)

One sees that one has recovered the result of LAME precisely, if one remarks that the
total work of the external forces and efforts on the frontier obviously reduces to the
indicated expression in the case of infinitely small deformations.

56. Natural state of the deformable medium. — In the preceding we started with a
natural state of a deformable medium and then we were given a state we called
“deformed.” We indicated the formulas that permit us to calculate external force and the
analogous elements that are adjoined to the function W for the deformable medium and
represent the action of deformation at a point.

As before, let us stop for a moment on this notion of natural state.

Up till now, the latter is a state that has not been subjected to any deformation.
Imagine that the functions x, y, z, «,a’,-+-,y" that define the deformed state depend on

one parameter, and that one recovers the natural state for a particular value of this
parameter. The latter then seems to us to be a special case of a deformed state, and we
are led to attempt to apply the notions relating to the latter to it.

Without changing the values of the elements that are defined by the formulas of sec.
52, one may replace the function W with this function augmented by an arbitrary definite
function of xo, yo, 20, and, if one is inspired by the idea of action that we associate to the
passage from the natural state (Mj) to the deformed state (M) then one may, if one
prefers, suppose that the function of xo, yo, zo that is defined by the expression:

©0) ,,0) _(0) ) ) _.(0)
W(Xe,¥0:2058 51 5Si »Pi i 51 )

is identically null; however, the values obtained for the external force and the analogous
elements with regard to the natural state will not necessarily be null. We say that they
define the external force and the analogous elements relative to the natural state (1).

"E. and F. COSSERAT. — Premier mémoire sur la théorie de I’élasticité, pp. 77.
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In our way of speaking, the natural state presents itself as the initial state of a
sequence of deformed states, a state that we start with in order to study the deformation.
As aresult, one is led to demand that it is not possible to make one of the deformed states
play the role that we have the natural state play, and that this must be true in such a way
that the elements that we defined in sec. 52 (external force and moment, external effort
and moment of deformation), which were calculated for the other deformed states, have
the same values if one refers the first of these elements to the unit of volume of the
deformed medium and the second of these to the unit of area of the deformed surface.
This question may receive a response only if one introduces and specifies the notion of
the action that corresponds to the passage from one deformed state to another state.

The simplest hypothesis consists of assuming that this latter action is obtained by
subtracting the action that corresponds to the passage from the natural state (My) to the
first deformed state (M ") from the action that corresponds to the passage from the natural

state to the second deformed state (M). With regard to(M"),if we denote the quantities
that are analogous (%) to &, 7, &. pi» qi» i relative to (M) by &.,n/.c/, pl.q..r/, then we

are led to adopt the following expression for the action of the deformation relating to the
passage from the state(M") to the state (M):

(52) [ W 0305206156052y 1) = Wy s 20600161 1o ) Yegdyy 2,
which one may write, if A’is the value of A for (M) :
(53) I Wy oo Yos2055 570565 Py i) VA L dydygdlz,

in which we have let S’ denote the surface of (M ") that corresponds to Sy for (M), and
W, (X4, Y0>20-& 51 56> P;»q; »1;) denotes the expression:
! ! ! ! ! r 1
{W(x()ay() ) ’5,',77,' agiap,’aqi ,I’i) _W(x()ay() ) agi a77,' agi »Pi»q; a’ﬁ,)}m

Furthermore, from the remark made at the beginning of this paragraph, one may, if
one prefers, substitute the following expressions for (33):

(53) I W 0003020818 Pty r) VA dxydyydzg,

' We may then speak of the force, effort, etc., since we regard the natural state as the limit of a sequence of
states for which we know the force, effort, etc. Up till now, the force, effort, etc. were defined for us only
when there was a deformation capable of manifesting and measuring them.

0 0 0 0 0 0
* One must remark that &'m'.¢'.p'.q'.r' are not analogous to & )”7,-( )’5',-( ),pi( ),qi( ),rl.( ’,because they
1 1 1 1 1 1

are not formed by means of the coordinatesx’,y’,z' of (M')in the same way that 51'(0)”7,-(0)’5;0)’

0 0 0
pl.( ),qi( ),rl.( ) are formed by means of xy, o, 2o-
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in which W'(x,,¥,,2,.&,,7,,S, P, -4, 1;) denotes the expression:
W(xo’yo’zo’gi 11565 Pi>4; ’ri)m‘

If one remarks that one has, for example:

aW/(x()ay() aZ() ,g,»,"',”,») — au/(-x()ay() aZ() ,g,»,"',’”,»)
&, &,

[A']

9

then it is clear that applying formulas that are analogous to those of sec. 52 to expressions
(53) or (53") and starting with(M ") as the natural state, but while supposing that (M ") is
referred to the system of coordinates Xy, Yo, z0, and assuming that the formulas of sec. 52
are modified as a consequence, will give the same values for the exterior force and
moment relative to the state (M) referred to the unit of volume of (M), as well as the same
values for the effort and the moment of deformation referred to the unit of area for (S).
Therefore we may consider (M) to be a deformed state for which(M ")is a natural

state, provided that the function W associated with the state (M) is actually (1) W, or W'.

Conforming to these indications, suppose, to fix ideas, that the external force and
moment are given by means of simple functions of xo, yo, zo and elements that fix the
position of the triad Mx'y'z'. Suppose, moreover, that the natural state is given. We may
consider the equations of sec. 52 relating to the external force and moment to be partial
differential equations in the unknowns x, y, z and the three parameters 4;, A», A3 by means
of which one may express a,a',---,y". The expressions &, i, &, pi, i, i are then
dx dy azjﬂjz&aﬂq a4, 04,
ap, " op, ap, 0.9, op,
Z0) that one calculates by means of formulas (43) and (44).

Suppose that X;.Y,,Z,,L,,M,N;,or, what amounts to the same thing, X, Yo, Zj,

functions of — (always setting 01 = xo, 02 = Yo, 03 =

Lo, My, Ny are given functions of xo, yo, 20, X, ¥, 2, A1, A2, A3 . The expression W is, after
substituting for the values of &, n, &, pi, gi, ri by means of formulas (43) and (44), a

.. ) oA A,
definite function of xo, yo, zo, ﬂ,---,ﬁ,)ﬁ Ay Ay, —

Xo 0z, 0x, azo
denote by W, and the equations of the problem may be written:

" As we said at the beginning of this section, this permits us to generalize the notion of natural state that we
first introduced. Instead of making this word correspond to the idea of a particular state, we may, in a more
general fashion, make it correspond to the idea of an arbitrary state, starting from which we may study the
deformation. The fact that we introduced Xy, Yo, 2o at the beginning of the theory seems to make (M) play a
particular role; however, one must not consider x, Yy, zo as anything but the coordinates that serve to define
the different media, and not only (M;). One has chosen these coordinates in a particular fashion, and in
relation to a particular medium, in order that one must, as a result, pay attention to (M) in the context of
infinitely small deformations.
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0d 3W+a 3W+a ow
axoaax ayoaax aZO aﬂ

0°

ox, ay, 9z,
a 0w N a 0w N a oW
0xy 5 0y 9y, 5 9y 0zy 5 9y

0°

ox, ay, 9z,
g oW g oW g ow

+ + =Z,,
X, 4 9z 9y, 3 9z 09z, 3 0z

0x, ay, 9z,
g oW o9 oW o oW oW

— +— +— - =L,
0, a% Yy a% 9z, a% A
0x, ay, 9z,
iaW_l_iaW_l_iaW_aW_/\/{O
0, a% Yy a% 9z, a% 94, ,
ox, ay, 0z,
dg ow a oW g oW oW
=N0,

0, a% A a% 9z, a% 92,
0, Yy 07

in which Ly, My, Ny are functions of xo, Yo, 20, X, ¥, 2, A1, A2, A3 that result from the

definitions of sec. 53.
It results directly from the formulas of the preceding paragraphs that a more

immediate way of defining Xo, Yo, Zo, Lo, Mo, No may be summarized in the relation:

6 [[[Wax,dydz, + 0T, =0,
i.e., in:

8 [[[ waxydy,dz, = [[ (Fyox+Gydy + Hydz+ T,0h + J,0%, + K,04)do
~[[] (Xo0x+Y,0y + 2,02+ L,0%, + Mo, + Ny 04 dxdy,dz,

57. Notions of hidden triad and hidden W. — In the study of deformable media, as
in the study of deformable lines and surfaces, it is natural to pay particular attention to the
pointlike media that are described by the deformable media. This amounts to envisioning
x, v, z separately and considering a,a’,---,y" as simply auxiliary functions. This is what
we likewise express by imagining that one ignores the existence of the triads that
determine the deformable medium, and that one knows only the vertices of those triads.
If we adopt that viewpoint in order to envision the partial differential equations that one
is led to in this case then we may introduce the notion of hidden triad, and we are led to a
resulting classification of the diverse circumstances that may be produced by the

n

elimination thea,a’,-+-,7".
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Therefore, a primary study that presents itself is that of the reductions that relate to
the elimination of thea,a',---,y". Likewise, in the corresponding particular cases in

which the attention is directed almost exclusively to the pointlike media that are
described by the deformed medium (M) one may sometimes abstract from (M), and, as a
result, from the deformation that permits us to pass from (M) to (M).

As we already said for the deformable line and surface, the triad may be employed in
another fashion. We may make particular hypotheses on it and the medium (M); all of
this amounts to envisioning particular deformations of the free deformable line. If the
relations that we impose are simple relations between &, 7, &, pi, qi, 1i, as will be the
case in the applications that we shall study, we may account for these relations in the
calculation of W and deduce more particular functions from W. The interesting question
that this poses is that of introducing these particular forms simply, and to consider the
general W that serves as the point of departure as being hidden, in some sense. We thus
have a theory that will be specific to the particular deformations brought to light by the
given relations between &, n;, &, pi, qi, 1i.

We confirm that by means of the theory of free deformable media one may therefore
combine the particular cases and provide a common origin to the equations that are the
result of special theories that one encounters in physics )

In the particular cases, one sometimes finds oneself in the proper circumstances to
avoid the consideration of these deformations; in reality, they must sometimes be
completed. This is what one may do in practical applications when one envisions
infinitely small deformations.

Take the case in which the external force and moment refer only to the first
derivatives of the unknowns x, y, z and A, A,, A3; the second derivatives of these
unknowns will be introduced into these partial differential equations only for W;
however, the derivatives of x, y, z figure only in &, #;, &, and those of 4;, A2, A3 show up
only in p;, ¢;, r;. One therefore sees that if W depends only on &, #;, &, or only on p;, g;,
r;, then there will be a reduction in the order of the derivatives that enter into the partial
differential equations. Here, we examine the first of these two cases, which corresponds
to the ordinary theory of elasticity for material media and to the theory of the various
ethereal media that are envisioned in the doctrine of luminous waves.

58. Case in which W depends only on x, yo, z0, &, 7;, &, and is independent of p;,
qi, . How one recovers the equations that relate to the deformable body of the
classical theory and to the media of hydrostatics. — Suppose that W depends only on
the quantities xo, yo, 20, &, Wi, &, and not on p;, g;, r;.. The equations of sec. 56, which
reduce to the following:

" All of our considerations heretofore may be applied just the same to material media as to various ethereal
media. We have declared the word matter to be invalid, and what we expose is, as we said to begin with, a
theory of action for extension and movement. To have a more complete idea of the notion of matter, we
shall explain later on how one must approach the latter from the concept of entropy according to the
profound viewpoint that LIPPMANN introduced into electricity.
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a ow a oW J oW ow

+ + =X,, —+£L,=0,
ax, aﬂ 9y, 0 0x  dz, aﬁ a4,
ox, ay, 9z,
0 8W+8 8W+8 ow _v, ﬂ_l_/\/{():(),
x, aal 9, aﬂ 0z, aal 04,
ox, ay, 9z,
0 8W+6 8W+8 ow v ﬂ+/\/'0=0,
ax, aﬁ 9, aﬁ 0z, aﬁ a4,
0x, ay, 9z,
. . ox 0z .
in which W depends only on xo, yo, 2o, a—,-'-,a—,il, A2, A3, we show that if one takes
Xo 2o

the simple case in which Xo, Yo, Zo, Lo, Mo, Ny are given functions (') of xo, Yo, z0, X, ¥, 2,
aa—x,-'-,aa—z,il, A2, A3 then the three equations may be solved for 4;, A2, A3, and one
Xo <o

finally obtains three partial differential equations that, from our hypotheses, refer to only
the xo, yo, z0, and to x, y, z, and their first and second derivatives.

First, envision the particular case in which the given functions Lo, Mo, Ny are null;
the same will be true for the corresponding values of the functions of one of the systems
(Ly,M,,N,), (Lo, Mo, No),(L, M, N). Tt results from this that the equations:

ow ow ow

. =Y . =Y, . = 0,
A, A, A,
amount to:
o, W oW g g9 p 2y
0 0 "0z, 0x, 9y, 0z,
A az+A2 0z VA, 0z o) 0x _c, 0x _c, 0x -0,
0x, ay, 0z, 0x, ay, 0z,
B g M g 0 g, W
9, 9y, "0z, 9, Yo 02,
i.€e.,
Pyz = Pzy» Pz = Pxz» DPxy = Dyx

whose interpretation is immediate.
Haing said this, observe that if one of the two positions (Mj) and (M) is assumed to be

given, and that if one deduces the functions £y, Mo, N from this, as in sec. 53, then in
the case in which these three functions are null one may arrive at this result accidentally,

" In order to simplify the exposition, and to indicate more easily what we are alluding to, we suppose that
Xo, Yo, Zo, In, My, N, do not refer to the derivatives of A;, 4,, A3.



166 THEORY OF DEFORMABLE MEDIA

1.e., for a certain set of particular deformations; however, one may arrive at this result for
any deformation (M) since it is a consequence of the nature of the medium (M), i.e., of

the form of W.

Consider this latter case, which is particularly interesting; W is then a simple function
(1) of pi, 2, 3, and the six expressions €i, &, &, A1, A2, A3, which are defined by the

formulas (45).
The equations deduced from sec. 52 and 53 reduce to either:

aA/ ! ! ! !
Z(G_I+Qici/_riBt'/J=X(l)’ Fy =1,A +my A, +nyA;,
i \ 90;
aB[I ! ! ! ! ! ! !
Z A -pC =Y, Gy =1,B, + myB, +n,B;,
=\ an, |
acl ! ! ! ! ! ! !
Z a_l"' pB - q,A |=2,, H, =1,C, +mC, +n,C;,
i \ 90

AI,=§i6W+k6W+18W
de; a}/j IV
B=n, Wiy, W, M Gjk=1,2,3).
de; a}/j IV
, ow ow ow
Ci=¢ k +g;
de; 6}/! Y,
or to (2):
0A, 0A 0A
L 2y 3=X0, F, =1,A +myA, +n,A,,
ox, dy, 0z,
oB oB oB
! 2y—2=Y,, G, =1,B, + m,B, +n,B,,
ox, dy, 0z,
JoC, aC oC
Ly—2+—2=7, H,=1,C, + m,C, +n,C,,

in which one has:

A =Q +E +E ,
1 1aXO 1ay0 2 9z,

— 0x ox . Ox

A =&, +Q,—+E —,
0x, Y, 0z,

A =E aX+Elﬂ+§2 ﬂ,

? 0x, ay, ’ 0z,

" The triad is completely hidden; we may also conceive that we have a simple pointlike medium.

* Compare E. and F. COSSERAT. — Premier Mémoire sur la théorie de Iélasticité, pp. 45, 46, 65.
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0x, ay, 02,
B, =E, 9y +Q, — 9y +E KAl
Yox, 9y, 02,
B’;=E ay "'Elﬂ Q ﬂ
ox, 4y, 02,
C -0 9z g, 0z +E, 9z ,
ox, 4y, 02,
C, ==, 0z Q ﬁ :1ﬁ
ax, oy, 92,
c, -2, %5 % g %
ax, Ay, oz
in which we set Q. = ZW =, = ﬂ,to abbreviate notation, or we get (1):
£, ;
) p,. 9
pxx+ p) + pzx=X, F:lpxx+mpyx+l’lpzx,
ox ay 0z
.. op. Op..
Px} + p)} + pzy _ Y, G = lpxy +mpyy + npzy,
ox ay 0z
) ap,, 9
pxz + p), + pzz = Z, H: leZ +mpyz + npzz,
ox ay 0z

in which one has:

2 2 2
pu=l Qlﬂ +Qzﬂ +Qg£ +28, 24
A 0x, ay, "\ 0z,

and analogous formulas for p,, ...
which we shall recall in a moment.

0x ax —  ox
2 )
ayo azo

ax

0z, axo
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+ 28, 0x ox
axo 9,

A has the significance that we gave it in sec. 51,

As one sees, we recover the continuous deformable medium as it is treated in the

ordinary theory of elasticity.

A particularly interesting case is obtained by looking for a form for W that gives the

identities:

Pyz =0, Pyx:Oa Pxy =0,

ox
for any —,---
0x,

expression A, which is defined by the formulas (1):

One finds that W must be a simple function of xp, yo, 20, and the

" Compare E. and F. COSSERAT. — Premier Mémoire sur la théorie de I’élasticité, pp. 40, 44, 65.
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1+2e 73 72
_3(x,y.2) e |,

= , 7 1+2¢ e
9(x9,Y0520) ? ? :

V2 14 1+ 2e¢,

from which one may see, upon remarking that if one refers to the previous formulas (%)
that gave us p,., pyx, Pz, .. as a function of Ay, ... then one has:

ow ow ow

R
dx,  dy, 9z,

0A 0A oA

g Ox g
0x, Y, 0z,

and two analogous systems; since W is assumed to be a simple function of xo, yo, zo, and
A, one has, as a result:

B B _ oW

Pu=Py =P, = A

If we consider the particular case in which W depends only on A, and if we assume
that we are given X, Y, Z expressed as functions of x, y, z then the equations in question,
which are:

9 2 9

w_y ®_, p
ox ay 0z

G = mp, H = np,

upon setting p = Z—VAV,become those which serve as the basis for hydrostatics (). The

initial medium (M,) appears only by way of A, and one may replace the unknown A with
the unknown p that is related to it by the relation p = Z—VAV If the function W, which is

not given, is hidden then one has the preceding equations, in which p is an auxiliary
function whose significance is well known.

It will suffice for us to indicate that the case in which the functions Lo, My, N, are

non-null comprises the theory of all the ethereal media that have been considered for the
study of luminous waves from MACCULLAGH to LORD KELVIN, but here the theory
of these media is completely mechanical. We likewise mention that the most general

' Compare E. and F. COSSERAT. — Premier Mémoire sur la théorie de I’élasticité, pp. 23, 24.
* These formulas are actually the ones on page 47 of our Premier Mémoire sur la théorie de I’élasticité.

? Compare DUHEM. — Hydrodynamique, Elasticité, Acoustique.
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case, in which the trace of the derivatives of the action W with respect to the rotations p;,
gi, ri remains in the expression for the external moment leads in the most natural manner
to the notion of magnetic induction that was introduced by MAXWELL.

59. The rigid body. — We have considered the particular case in which W does not
depend on p;, ¢g;, ri, and different special cases of this case. One may arrive at the other
media that were considered, at least in part, by the authors, either by the study of
particular deformations, or by the study of new media that are defined by a theory of
constraints that profits from the results that we already acquired.

For example, start with the simple case, in which the triad is hidden, i.e., by
definition, it is a pointlike medium in which W is a function of xy, yo, 2o,

&1, &2, 8, 1, 125 )3-

1. We may imagine that one pays attention only to the deformations of the medium
for which one has:

51:6‘2:53:}/1:}/2:}/3:0_

In the definitions of forces, etc., it suffices to introduce these hypotheses, and, if the
forces are given, to introduce these six conditions. In the latter case, the habitual
problems, which correspond to the given of the function W, and to the general case in
which the g, y are non-null, may be posed only for particular givens.

If we suppose only that the function Wy that is obtained by taking & =& =a=n=n
=y =01in W(p1, o2, €1, ...) 1s given, that one does not know the values of the derivatives
of W with respect to &, &, ...,y3 for & = & =...= 5 = 0, so that W is hidden, then we see
that p,,, ..., p.., for example, become six auxiliary functions that one must adjoin to x, y,
z, in such a way that, for the case in which the forces that act on the volume elements are
given, we have nine partial differential equations in nine unknowns in the case, to which
one must adjoin accessory conditions.

Now we remark that one knows how to integrate the system:

51:6‘2:53:}/1:}/2:}/3:0_

Since the deformation is supposed continuous, the integral corresponds to a
displacement of the set of the medium; it thus remains for us to determine the six
constants of integration and the auxiliary functions py, ...

If the forces and efforts that act on the medium are given, and we suppose that X, ...
are known as functions of x, y, z then the six equations of sec. 54, with the simplifications
implied for the form of W, when applied to the entire body, determine the six integration
constants. To complete the process, what remains is for us to ultimately determine py,, ...

If we leave aside the problem of this ultimate determination, then one sees that we
recover the habitual problems of the mechanics of rigid bodies, in which one might
ordinarily suppose that the hidden function W depends only on A.

2. We may imagine that we seek to define a medium whose definition already takes
the conditions:
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a=a==n=n=5=0
into account, sui generis.
In order to define the new medium, while thinking along the same lines as before, we
further define F,---,N, by the identity:

.ULO OoWdx,dy,dz, = J.J-So (Fyox+--+K,0K"do,
- HL (X 0%+ + N,OK dx,dy,dz,.

However, this identity must no longer hold, by virtue of the fact that & = ... = 3 =0.
In other words, we envision a medium in which the theory must result from the a
posteriori addition of the conditions & = ... = )3 = 0 to the knowledge of a function
W(xo, yo, 20, &1, &,..., 3) and six auxiliary functions w,..., t of xo, Yo, 20, by means of the
identity:

”LO (OW + u,e, + U, &, + -+ . y,)dx,dy,dz, = ”SO (F,6%+--)do,
_.ULO(X(;§')C+...)dxodyodzo,

which amounts to setting & = ... = 3 = 0 in the general theory that preceded, in which
one has replaced W with W, = W+ w1 + ... + ts&s .

As one sees, we come down to the theory of elastic media that correspond to the
function W of xo, Yo, 20, €1, &,..., ¥3 when one restricts oneself to the study of deformations
that correspond to & = ... = y3 = 0. Therefore, if we consider the case of a hidden W
then if we suppose that we known simply the value W(xo, yo, z0) that W and W, take
simultaneously when ¢ = ... = 3 = 0 then we recover the habitual theory of the rigid
body.

Observe that if we account for the conditions & = ... =y =0 in W a priori by a
change of auxiliary functions then we are led to replace W with we + ... + ts&; in the
calculations that relate to the general medium, and we likewise find formulas that come
down to the study of an elastic medium in which we are confined to studying
deformations that correspond to & = ... = 3 = 0. Upon supposing that u,..., s are
unknown, we once more come down to theory that comprises the habitual theory of the
rigid body. From this latter viewpoint, we return to the exposition that one may make
about the ideas of LAGRANGE. In particular, we may observe that in the case in which
Xo, Yo, Zp are given as the partial derivatives with respect to x, y, z of a function @ of xj,
Yo, 20, X, ¥, z the equations in which Xy, Yy, Zy figure are none other than the equations that
one is led to when one seeks to determine the extremum of the integral:

.UJ. @dx,dy,dz,
given the conditions:
51=52=g3=}/1=}/2=}/3=0_
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3. We discuss a third procedure (') for constituting a medium for which the theory
always leads to the same equations, and which will be a limiting case of the original
theory. This procedure agrees with the first one, and it may also be applied to the cases
of the deformable line and surface.

Imagine that the W that serves to define the original medium is variable, and, to fix
ideas, suppose that the values of ¢, ... , 3 are developable in a MACLAURIN series in a
neighborhood of zero by the formula:

W=W + W+ ...+ Wi+...,

in which W; represents the set of terms of the /™ degree. Assume that the coefficients of
W, (which may depend on xy, yo, z0) increase indefinitely in their variation. If we want W
to conserve a finite value then we must suppose that &, ... , y3 tend towards zero. In
other words, we may then consider only deformations that satisfy &, = ... = =0. In
other words, the body that we approach in the limit may take only displacements of the

set. We may suppose that one makes the derivatives Z—W, , which approach limits
81
when W varies in a manner we shall describe, likewise vary as a consequence of a studied
deformation for this medium.
To explain this in a more precise fashion, imagine that the coefficients of Wi, W, ...
depend on one parameter 4, in such a way that when /4 tends towards zero the coefficients
of W, increase indefinitely. To fix ideas, suppose that the latter coefficients are linear

with respect to Z Likewise, imagine that x, y, z, which define the deformation in

question, vary with 4 in such a way that ¢, ... tend to zero. In addition, we suppose that
&1, ... are infinitely small of first order with respect to h; for example, &, ...might be
developed in powers of 4, and the first terms of that development are the ones in 4. With
" 0 ow e .
these conditions, W tends to zero, and a—,-~-,a— tend to certain limits (which may be
& 73
functions of xo, yo, z0). Therefore if we consider the equations of sec. 52 that serve to
define external force and moment then we are finally led to formulas that permit us to
define them, and which are none other than equations of our point of departure, in which
the notion of the function W has disappeared, and in which six auxiliary functions

F,.G,,H;,1,,J,.K, figure.

60. Deformable media in motion. — The theory of motion for the deformable line
and that of the motion of the deformable surface present themselves very naturally as
special cases of the theory of the deformable surface and that of the deformable medium.
To see this, it suffices to give one of the parameters p; of the surface or medium the
significance of time. As we will not envision the statics of media of dimension greater
than three here, we must expose the theory of motion of a deformable medium directly in

' Compare THOMSON and TAIT. — Treatise, vol. 1., Part. I, pp. 271, starting with the 11" line down.
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what follows; however, we nevertheless give it a form that is entirely analogous to the

one that we indicated for the dynamics of deformable line and the deformable surface.
Consider a space (M) that is described by a point M, whose coordinates are xy, Yo, 2o

with respect to the three fixed rectangular axes Ox, Oy, Oz, and adjoin a trirectangular

triad to each point M, of the space (My) whose axes M ,x,,M,y,,M,z, have the direction
cosines &,y By > BosBos Vo Vo s Vo With respect to the axes Ox, Oy, Oz, respectively,
and which are functions of the independent variables xo, yo, zo.

The continuous three-dimensional set of such triads M x; y,z, may be considered as
the position at a definite instant 7 of a deformable medium that is defined in the following
fashion:

Give the point M, a displacement MyM, which is a function of time ¢ and the position
of the point My, and is null for # = #,. Let x, y, z be the coordinates of the point M, which
we consider to be functions of xo, yo, z0, #. In addition, endow the triad M ,x; y,z, with a

rotation that makes its axes finally agree with those of a triad Mx'y'z" that we adjoin to the
point M. We define that rotation by giving the direction cosinesa,a',a”;
B.B.8" v,y,y" of the axes Mx',My',Mz' with respect to the fixed axes Ox, Oy, Oz.
Like x, y, z, these cosines will be functions of x, yo, 2o, .

The continuous three-dimensional set of triads Mx'y'z’, for a given value of time ¢,
will be what we call the deformed state of the deformable medium considered at the
instant 7. The continuous four-dimensional set of triads Mx'y'z" that is obtained by
making ¢ vary will be the trajectory of the deformed state of the deformable medium.

For ease of writing and notation in the sequel, we sometimes introduce, as we already
did, the letters pi, 02, 03, instead of xo, yo, z0. We continue to denote the components of
the velocity of the origin M, of the axes M x,,M,y,,M,z, along these axes by

EQ 0 ,c, when p; alone varies, and the projections of the instantaneous rotation,

relative to the parameter 0, of the triad M x,y,z, on these same axes by p”,q”,r .

We denote the analogous expressions for the triad Mx'y'z" by &, n;, &, and p;, gi, ri, when
one refers them, like the triad M x; y, z, ,to the fixed axes Oxyz.

When time ¢ varies, and the motion of the triad Mx'y'z" is referred to the fixed triad
Oxyz then the origin M has a velocity whose components along the axes Mx',My' ,Mz'

will be designated by & », £ and the instantaneous rotation of the triad Mx'y’z' will be

defined by the components p, g, r.
The elements that must introduce are calculated as in sec. 49; first, one has the
formulas:

ox 0 y 02 J d
S =«a ra 2 ta , pi=2y—/j=—2/j—y,
9p; 9p; 9p; 9p; 9p;
ox ' ay " 0z 8}/ Jo
54 = + + , 55 =y oa——=- e
CY m=p P, & P, & P, 55 qa-2 P, "op,
x 9 , 0z da 9
e =) B—=- 9
9p; 9P, 9p; 9p; 90,
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to which we adjoin the following:

0x , dy » 02 ap ay
=a—+a —+a —, = — = —,

J ot ot ot P 2}’ ot Z/j ot

, ox , dy » 02 , ay Ja
54 =f—+p =+ —, 55 =>a—=- —_—,
(54 nﬁat/jatﬁat (55) qzat iy
ox /ay //aZ Ja 6/3’
=y—+y —+y —, r= — ==y a—,

° yat 4 ot 4 ot Z/j ot ot

if one now introduces the distinction between the notations for the derivatives with
respect to time depending on whether one takes xo, yo, zo, f Or X, y, Z, t for the independent
variables.

Suppose that one endows each of the triads of the trajectory of the deformed state
with an infinitely small displacement that varies in a continuous fashion with these triads.
With the same notations as in sec. 50, we have:

(56) oa = BOK' - ydl',

(57) Ox=0+78] =y OK', Oy=0'+xK —70', 87=0 +y' ol —xdJ,

(5§i=;7,.<5K’—gi<5.]'+@+qié'z—n(5'y, 5Pi=ﬂ+%5K/—’3‘ﬂ/’
9P, 9p;
(58) n, = giél'—giéK'+?+ rdx-p.oz, (59) &g, =Zi+riél'— p,OK’,
Si =§i§-]/_77iéll+%+ piél))_Qié'/x’ or, = 90K + pié‘]/_Qiéll’
R &, =S 1 0K -,
t

(58" n, = giél'—giéK'+%+ rdx-p.oz, (59 &g, =%+m§l'— p,OK’,
t

c, = §iéJ’—niéI’+%+ 8% —q.0%, o = agK +p &) —qol'
t t

61. Euclidean action of deformation and motion for a deformable medium in
motion. — Consider a function W of two infinitely close positions of the triad Mx'y'z’, ie.,

a function of xo, yo, 20, t, and of x, y, z,a,a',-+-,7", and their first derivatives with respect
y y 4 p

to xo, Yo, 20, t. We propose to determine the form that W must take in order for the
quadruple integral:

”J.[deodyodzodt,
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when taken over an arbitrary portion of space (My), and the time interval between two
instants #; and 7, to have a null variation when one subjects the set of all triads along what
we are calling the trajectory of the deformable medium — taken its deformed state — to the
same arbitrary infinitesimal transformation of the group of euclidean displacements.

By definition, this amounts to determining W in such a fashion that one has:

W=0

when, on the one hand, the origin M of the triad Mx'y'z" is subjected to an infinitely small
displacement whose projections dx, dy, ¢z on the axes Ox, Oy, Oz are:

ox =(a, + 0,2 —w,y)ot,
(60) Oy =(a, + w;x —w,2)0t,
0z =(a; + W,y —w,x)ot,

in which a1, a», as, @, a», @ are six arbitrary constants, and J is an infinitely small
quantity that is independent of xo, yo, zo, ¢, and when, on the other hand, this triad Mx'y'z’
is subjected to an infinitely small rotation whose components along the Ox, Oy, Oz axes
are:

w 0Ot, @ Ot, s Ot.

It suffices for us to repeat the reasoning that we made before, with several reprises, in
order to see that the desired function W has the remarkable form:

W(X(), Yo, <0, Z, §i) 771') é.l') Dis 4, Ti, 5) 77} é.: D, q, r)a

which is analogous to the one we encountered for the deformable line, surface, and
medium at rest.
We say that the integral:

.[jz .[ .[ LO Wax,dy,dz,dt,

is the action of deformation and motion in the interior of the surface S of the deformed
medium in motion and in the interval of time between the instants #; and ;. On the other
hand, we say that W is the density of the action of deformation and motion at a point of
the deformed medium when taken at a given instant, and referred to the unit of volume of
the undeformed medium and the unit of time. If we give A the same significance as in

w . . . . o
sec. 51 then —— is the density of that action at a point and a given instant, when referred

to the unit of volume of the deformed medium and the unit of time.
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62. The external force and moments; the external effort and moment of
deformation; the effort, moment of deformation, quantity of motion, and the
moment of the quantity of motion of a deformable medium in motion at a given
point and instant. — Consider an arbitrary variation of the action of deformation and
movement in the interior of a surface (S) of the medium (M), and the time interval
between the instants #; and #,, namely:

o [T Wzt = HLO{ (oo

+ﬂ6. &1 aW +6W6§+6W677+6W6g
ap; ar, & 677 65
N aaW (5q + 2 6r}dx0dy0dz0dt
P

By virtue of formulas (58),(58'),(59), (59'),we may write:

oF Il st ([ | ] S v+ 2205

i

+a—(g(5[ -£0K' +Z§ +r,0Xx - péz)+—(§é] -~ .§I'+%+pi(5'y—qi§’x)

i i i

+ﬂ(ﬂ+q.(ﬂ('—r[é]'j+a—(a§] r.ol’ —p(SKj (% pi(ﬁ]'—qi(ﬂ'ﬂ
g, \ ap, ar; \ 90,

+ﬂ(;751<' _eor + 9% 4 ast—roty+ W cor — ok + 290 1 o - pot)
& ot an ot

+—(§§J -ndl’ +£+p§y qéx)+_[ﬂ qéK’_rd]'j
65 dt dp \ dt

doK

+— +70l' - (SKJ [—+p(5J'—q§I'j dx,dy,dz,dt.
or \ dt

d(SJ
dq
We apply GREEN’s formula to the terms that explicitly involve a derivative with
respect to any of the variables, pi, p2, p3, and perform an integration by parts over the
terms that explicitly involve a derivative with respect to time, t. If we let [y, mo, noy,
designate the direction cosines with respect to the fixed axes, Ox, Oy, Oz, of the exterior
normal to the surface, Sy, that bounds the medium before deformation at the instant, ¢,
and designate the area element of that surface by doy, then we obtain:

) | ”S Wax,dy,dz,dt =
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i oW ow ow ., oW oW ow |,
.[ ” L, +m, +n, X+ 1, +m, +n, Oy
995 651 652 a§3 d

m a1, 91,
ow ow ow ., ow ow ow ).,
+| [, +m, +n, 0z+| 1, +m, +n, ol
¢, Clgs 953 ap, ap, 9P,
+(l0 w +m, ow + 1, awjél#(lo W +m, W + 1, aWjéK’ do,dt
dq, 9q, dq, or, r or,
T | B AL TP LA LA VLT T
5o\ 0& on ¢ op aq or t
2 d oW oW ow d oW ow aw |,
J. J.H +q, -, +— +q -r O X
(Rl ap; 98, ds; dm, ) ot o0& ~ dg  Ipy
d oW 6 oW ow |,
+ +7, - pl I’ -p oy
|~ 9p; an, & 6t6n 5 s
< 0 oW XL W
+ > pi —CI, 2
| T\ 9p; 9g; a1, 8t65’ Tae
' 0 oW oW
+ +ql _rl + i _gi
L apt apt art aqt agt ant
d oW ow oW ow ow |,
r -G Jl
dt dp or dq ag an

da oW ow ow ow ow
+ z +D; -4, +§i -7,
9,0, o, 9g; ap, an, a&;

i w +p w -q w +& aW aW OK' bdx,dy,dz,dt.
dt or dq op an 65

As in sec. 52, set:

, ow ow ow , ow ow ow
Fy=l,—+my—+n,—, I, =1, +my, +n, ,

a§1 a§2 853 ap, ap, ap;

, ow ow ow , ow ow ow
G, =1, +m, +n, , Jo =1, +m, +n, ,

an, an, an; dq, dq, 99,
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) w
H(’)=lan+man+nan, K0=103W+m06W+noa ,
95, s, e ar, ar, or,
and, in addition:
A=W W i
p=W W W
ap dq ’ or

' d oW ow ow d oW ow oW
Xo=2 it el K et r
op; 9§, g, 'am, ) at

, g oW W oW\ dow W oW
Y0=z +I’i —pi 4+ —
dp; I, a&, ac

: J W ow ow ow oW
N, = Z Pi —4q; +§ /I
dp, or, aq; ap, an, I,
d oW ow oW oW W
— -q §—-1y
dt or dq ap on 0E

This makes:

) J‘:z ” J’S Wdx,dy,dz,dt
= I HS (Fyox+GodYy + Hy0z+ 1,01 + 1,01+ K 0K Ydo,dt
T A0+ Y+ €0 ol + Q'+ RO ey |

ST XG0+ Yo+ Zi0 4 Lo+ Mya) + NyOK Yoy
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If we first consider the quadruple integral that figures in the expression for

o .[ ; J. J.J.S Wdx,dy,dz,dt then we call the segments that have their origin at M and whose

projections on the axes Mx',My',Mz' are X_.Y,,Z, and L;,M;,N, the external force
and external moment at the point M at the instant t, referred to the unit of volume of the
position of the medium at the instant t, respectively.

If we then consider the triple integral that is taken over time and the surface Sy then
we call the segments that issue from the point M whose projections on the axes
Mx',My' .Mz’ are -F/,-G,,—H, and -I,,-J,,—-K| the external effort and external
moment of deformation at the point M of the surface S that bounds the deformed medium
at the instant t. At a definite point M of (S) these last six quantities depend only on the
direction of the external normal to the surface S. They remain invariant if the region we
call (My) varies, but the direction of the normal does not change, and they change sign if
this direction is replaced by the opposite direction.

Suppose that one traces a surface Z in the interior of the deformed medium that is
bounded by the surface S, which, either alone or with a portion of the surface S
circumscribes a subset (A) of the medium, and let (B) denote the rest of the medium
outside of (A). Let Xy be the surface of (My) that corresponds to the surface S of (M), and
let (Ap) and (By) be the regions of (M) that correspond to the regions (A) and (B) of (M).
Mentally separate the two subsets A and B; one may regard the two segments
(-F,~G,,~-H,) and (-1,,~J,,~K;) that are determined for the point M and the
direction of the normal to X that points to the exterior of (Ag) as the external effort and
moment of deformation at the point M of the frontier Z of the region (A). Similarly, one
may regard the two segments (F,,G;,H,) and (I;,J,,K,) to be the external effort and
mOment of deformation at the point M of the frontier £ of the region (B). By reason of
this remark, we say that - F, ~G,,~H, and -1,,~J,,~K, are the components of the
effort and moment of deformation that is exerted on the portion (A) of the medium (M) at
M along the axes Mx',My',Mz', and that F,,G;,H, and I,,J,,K are the components
of the effort and moment of deformation that are exerted on the portion (B) of the medium
(M) at M, along the axes Mx',My',Mz'.

Finally, if we consider the triple integral over the volume of (M) at the instant 7,

whose values are taken at the extreme instants #; and #, , then we call the segments that
have their origins at M and whose components along the axes Mx',My' , Mz are A',B',C’

and P',Q",R' the quantity of motion and the moment of the quantity of motion at the
point M of the deformed medium (M) at the instant t, respectively.

63. Diverse specifications for the effort and moment of deformation, the
quantity of motion, and the moment of the quantity of motion. — As in sec. 53, set:

p W W W
08, an; 95,
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W W W

P'/_ ’ i ’ i ’
p; 9, o

1

in which A',B/,C! and P,Q/,R’ represent the projections on Mx',My',Mz', respectively,
of the effort and moment of deformation that are exerted at the point M of a surface that
has a normal that is parallel the axis Ox, Oy, Oz that we describe by the index i before
deformation. Indeed, it suffices to recall that we already agreed to replace the letters xo,
Yo, 2o that correspond to the indices 1, 2, 3 by this convention with o1, 0, 03. Recall that
this effort and moment of deformation are referred to the unit of area of the undeformed
surface at the instant 7.

The new efforts and moments of deformation that we just defined are related the
elements that the introduced in the preceding section by the following relations:

! ! ! ! ! ! ! !
Fy =1,A + myA, +n,A;, I, =1,P +m,P, +n,P;,

! ! ! ! ! ! ! !
G, =1,B, +m,B, +n,B;, Jo =1,0, + m,0, +n,0;,
H,=1,C +m,C, +n,C;, K,=I,R +m,R,+n,R;,

0A! A’
E —Y+¢q,C/ -rB] +_6 +qC'-rB'- X, =0,
00 ot

i

0B’ B’
Z —L+rA - p.C| +—a +rA' = pC'-Y, =0,
00 ot

aC! '
Dl —+p.B -q.A +£+pB'—qA'—Z(; =0,
9, ot

i

aP, ’ ’ I I a[),, ! ! ! ! !

Z -+ qR -0, +n,C -¢.B; [+ +qR -rQ +nC -¢B - L, =0,
00 ot
anl !

00!
Z(a_-'-ri[)i,_piRiI+.giAiI_§iCi,J+%+rP,_le+g4l_§Cl_M(l) =0,
Pi 4

OR’ R’
Z(a_'+ Q) - q,P +EB] - ’ZAIJ + 04 pQ'~ P + 5B~ A = N} =0.
0

1

One may propose to transform the relations we just wrote independently of the values
of the quantities that figure in them that are calculated by means of W. Indeed, these
relations relate to the segments that are attached to the point M to which we gave the
names. Instead of defining these segments by their projections on Mx',My',Mz', we may
Just as well define them by their projections on other axes; the latter projections will be
coupled by relations that are transforms of the preceding ones. Moreover, the
transformed relations are obtained immediately if one remarks that the original formulas
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have simple interpretations (') by the adjunction of axes that are parallel to the moving

axes at the point O.

1. As in statics, we confine ourselves to the consideration of the fixed axes Ox, Oy,
Oz. Let Xo, Yo, Zo and Ly, My, Ny denote the projections of the external force and the
he deformed medium at an instant ¢ onto
these axes, and let Fy, Go, Hy and Iy, Jo, Ko be the projections of the effort and the
moment of deformation on a surface whose exterior normal has the direction cosines [,
myo, no before deformation at the instant ¢. Let A;, Bi, Ci and P;, Qi, R; be the projections of
the effort (A, B/,C/) and the moment of deformation(P/,Q/,R/),and let A, B, C and P, Q,

R be the projections of the quantity of motion (A, B, C) and the moment of the quantity of

external moment at an arbitrary point M of t
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motion (P, O, R). The transforms of the preceding relations are obviously:

F, =1,A +myA, +n,A,,
G, =1,B, +m,B, +n,B,,
H,=1,C, +m,C, +n,Cj;,

P.

39

Jo =1,0, + myQ, +n,0;,
K,=[l,R, +myR, +n,R,,

I, =1,P +m,P, +n,

A
o4, + 04, + 04, +d—A—X0 =0,
ox, dy, 9z, dt
oB
9B, + 9B, +— +§—Y0 =0,
ox, dy, 0z, dt
aC
9C, + 9C, +—2 +d—C—ZO =0,
ox, dy, 0z, dt
P, P, 0P,
ok +a 24— +d—P+C1 9y +C, 9y +C, 9y +Cd—P
ox, dy, 9z, dt 0x, Y, "0z, dt
_B, 0z _B, 0z _B, 0z —BQ—LO= ,
0x, dy, 9z, dt
00, 00, aQ3+d—Q+A1 0z VA, 0z P A 0z +A£
ox, dy, 0dz, dt 0x, dy, 0z, dt
e ox _c, ox _c, ax_cﬁ_M(): ,
0x, ay, "0z, dt
R
dR, OR, OR, 41_Ie+B1 o g O g dx  pdv
ox, dy, 0z, dt ax, dy, 0z, dt
-4 o - A, o - A, o _Aﬂ_ 0=
0x, ay, 0z, t

" An interesting interpretation to note is the analogue of the one given by P. SAINT-GUILHEM in the

context of the dynamics of triads.
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2. Now observe that we may express the nine cosines «,a',---,7" by means of the
y exp v oy

three auxiliary functions 4;, A2, 43. Set:

D oydf == pdy =w\dl +wydh, + widh,,
Dady = =) yda = xidA + xsdh, + xidAs,
D Pda ==Y adff = 0ydA +0ydA, +04dA;.

The functions @;, i, ;i of A, A2, A3 so defined satisfy relations that we have written
several times already:

0w, Iw, s 40—y 0 =0
i) AT
04, 04,
ax'. oy
X o —olm =0, (,j=1,2.3),
04, 94,
o, o] vy 'y =0
iX) TW AT
A, 04,
and one has:
, 04, , 04, , 04, , 04, , 04, , 04,
p;, =0, +w, + W, , p=w, +w, + W, ,
00, 0, 0p; ot ot ot
B ,Ml_l_ ,a/12+ , 04, CI—X'MI+X' MZ+;(’ A,
=X p, & P, < ap, Yo "o 7o
, 04, , 04, , 04, , 04, , 04, , 04,
r, =0, +0, +0; , r=o0, +0, +0, ,
00, 0p; 0, ot ot ot

in which xo = o1, yo = 2, 20 = 3. If we let @;, )i, 0; denote the projections onto the fixed
axes Ox, Oy, Oz of the segment whose projections onto the axes Mx',My',Mz' are

@/, x,0] then we will have:
Za'da" = —Za"da' =w,dA, +w,dA, + w,dA,,

Za"da = —Zada" = x,dA + x,dA, + x,dA,,
D ada' ==Y ada =o0,dA +0,dA, + 0,dA,
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by virtue of which (1) the new functions @;, i, o; of A;, A, 43 satisfy the relations:

07, dw, o o

oA oA, KCITACE

dx;, dy.

aﬁj _a_i(l=o'iwj—0'jwi, (i,j:1,2,3),
i J

90 aa,._w -

oA on, KT

Once more, we make the remark, which will serve us later on, that if one lets oA,
0, 0As denote the variations of A, A, A3 that correspond to the variations
oa,oa -+ ,0y" of a,a',--+,y" then one will have:

o' =wdA +w,dA, +w,dA,,

o' = xidA, + x,dA, + x;dAs

OK' =o0,dA, +0,dA, + 0,dA,,

Ol =adl' + o]+ yOK' =@, 0A, + w,0A, + w,0A,,

o =a'0l'+ O]+ y'0K' = y,04, + x,0M, + 04,
0K =a"0l' + B'0]"+y'0K' = 0,04, + 0,0A, + 0,04,

in which dl, o/, K are the projections onto the fixed axes of the segment whose
projections onto Mx',My',Mz' are I',0J",0K'. Now set:

!yt ! ! ! !

Io =ZD’110 +X1J0 +01K0 = wlIO +X1J0 + OIKO >
! ! ! ! ! !

jo =ZD’210 +X2J0 +02K0 =ZD’210 +X2J0 +02K0 >
!y’ ! ! ! !

Ko =@l + x5 J ) + 05Ky = w31, + 3, ], + 04K,

[0 =ZD’1’L(;+)(1’M(;+O'I’N(; =ZD'1L0+){1M0+0'1N0,
/\/{0 =ZD';L(;+)(£M(;+O'£N(; =w2lﬂ+X2M0+02No’
N, =@ + ;M + 0N, =@, L, + );M, +O;,N, .

In addition, introduce the following notations:

' These formulas may serve to define the functions @;, ¥, o; directly and may be substituted for:
@ =aw +fy +yo’,

x —a'T +py +y'0, (i,j,=1,2,3),

n_r " __r

o =a'g' +BY +y'o.
i i i i
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I, =@,P'+ x,0] + O|R =@, P, + 1,0, + O\R,,
X, =@, P'+ ;0] + O,R =@, P, + x,0, + O,R,,
2, =w B+ 0,0+ OR =@, P+ 3,0, + O4R,,
M=w P+ x0 +0R =w,P+x0+0,R,
X=w,P' +x,0'+0,R =w,P + x,0 +0O,R
S=w,P' + ;0" +0,R =w,P+ 3,0+ 0,R

and, instead of the latter system, in which either P,Q/,R,P',Q',R" or P;, Qi, R;, P, O, R
figure, we have the following:

@, , ax , [ d0] ' '
- —Lt_P - .—l+I’ZD' R. ! . —q.w
Ly + E,Lpl l{ap ,xj Q‘(ap[ - po, j l[api X 4, lj

1

+ A'/(Xllgi _0-1/77,')"' B'/(O'lg' _wllgi) + Ci/(wllni _){1/51')]

!

BH a i /a ! !
+__P(%+qal_r)(1j Q(;il"'rwl palj_R(%"‘le_qwlj

+A(yic-om)+B(0/-wc)+Cl(wn-x& =0,

with two analogous equations. If one remarks that the functions &, #;, &, pi, ¢i, ri and &,

n, & p,q,r,and Ay, Ay, 43, 94 (MZ 0% d4 dk, d7, give rise to the formulas:
api apz apz dpl dpl dpl

aE p, Iw
Y + )6 —om, =0, 1 "o, T4OiTNX
J J

d .

/1l +0'& -ws, =0, % a){’+rw -p,;0;,
oA, A, dp;

ag ! ! ar / !

_l+w'77i_)f'§i=0’ —=—"+ X, q;9;,
oA, oA, 9 o
0& , , ) dw

67+X,-§—0,-77=0, 87p‘7+610 —rx;s
j j

on , dg X,

—+0&-ws=0, — =

A, / A, ot

il , , or 30

— +w'n- =0, —_— -qw
Py X5 on, +PX; =4

that result from defining relations for the functions @), /,0, and the nine identities they
verify, then one may give the preceding system the new form:
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08 , 91, 196, ,0p; , 9g, , or;

=L, + Z _A:__ —-C——-F—-0—/-R—-

9, A aj'l A oA A, A

+£—A/ a§ _B/ 677 _C/ ag _P/ ap _Q, aq —Rl or =0,
ot A, A, A, oA A, oA

with two analogous equations.

3. Finally, we shall subject the preceding two equations that we introduced to a
transformation that is analogous to the one that led us, in sec. 53, to the generalization of
the equations of the theory of elasticity that relate to effort.

To abbreviate the notation, let X;,)}, 2, ,L,,M,, N, denote — for the moment — the

left-hand sides of the transformation relation that refers to Xy, Yy, Zy, Lo, Mo, No,
respectively, and observe that one may summarize the twelve equations we have
established by the following:

. I A+ 20 + 2020 + Lo+ Moty + N )elnydlydz,
+.[2'[S {(F, =1,A -m,A, —n,A)A +(G, —1,B, —m,B, —n,B;)A,

+(H,-1,C, -m,C, —n,C))A, + (U, -1,P, —m,P, —n,P,)u,

+(J, -1,0, -m,Q, —n,0,)u, +(K, -l,R, —-m,R, —n,R;)u,}do,dt =0,

in which Ay, A&, A3, w1, to, us are arbitrary functions, and the integrals are taken over, on
the one hand, the time interval between the instants #; and ¢, and, on the other hand, the
surface Sp, of the medium (Mp) and the domain it bounds. If we apply GREEN’S

theorem and integrate by parts then the relation that we just wrote becomes the following
one:

- .[12 .”J.so (XOAI + YOAZ + ZOAB + Loﬂl + Moﬂz + N0ﬂ3)dx0dy0dz0dt
+ .[2 .”s (FoA + Gody + HoAy + L, + J g, + Ky uy)dode
i {”.[s (Ad + B2, + CAy + Pu, + Qu, + Rﬂ3)dx0dy0dz0}z

5) a/\w' 1)& dﬂ C”A, aﬂ, A’ A’
.[ J.J-.[ ( 1 ()jﬂ 42 + A,; 1 1 1 + B1 2 B 2 B,; a d
h So ax + 2 B )

dy, 0z, dt 0x, dy, 0z, dt
A A A dA
+C,—+C,—+C,—=>+ C—= |dx,dy,dz,dt
ox, y, "0z, dt

2 6 d d d 0 0 d
.[t J.J-.[ ALll ALll +Pf; lLl +P ALll Ql ‘le +Q2 ‘le +Q,; ‘le +Q ‘le
il So yO i aZO ot axo ayo ’ GZO dt
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d d d d
+R, Hs +R, H +R, “  REG deodyodzodt
ox, y, 0z, dt
2 d 0 d d
+.r ”I C, Y +C, N +C, Y w2
Rt ax, y, 9z, dt
9z 9z 9z dz
-B -B -B - B—|u,dx,dy,dz,dt
1ax0 2 3y, 3 0z, dt}ll 04y a4z
2 d
+.r J:U (Al 0z +A, “ + A, 9z +A%
R ox, ay, 0z, dt
0x 0x 0x dx
-C -C -C -C— |\u,dx,dy,dz,dt
1ax0 2 3y, 3 0z, dt}iz 04y a4z

> ) ) ) d
o ”LO(BI N

ady ay ay dy
-A -A -A - A— |u.dx.,dy,dz,dt = 0.
1 ox, 2 3y, 3 0z, dr Hsax,ay,az,

We seek to transform this last relation when one takes the functions x, y, z for other
new variables, while preserving r. We apply the elementary formulas for the change of
variables that we recalled in sec. 53 to the functions A;, A», A3, i, to, w3 . With S always
indicating the surface of the medium (M) at the instant ¢ that corresponds to the surface Sy
of (Mp). Moreover, let X, Y, Z, L, M, N be the projections on Ox, Oy, Oz of the external
force and external moment that are applied to the point M at the instant 7, and referred to
the unit of volume of the deformed medium (M), and let F, G, H, I, J, L denote the
projections on Ox, Oy, Oz of the effort and moment of deformation that are exerted at the
point M on S, referred to the unit of area of S. Finally introduce, as in sec. 53, eighteen
new auxiliary functions py, ..., gx, ... by the formulas:

Ap = AA, DA g =P D
X, 0 0z, 0x, 0 20
Apu=AlaZ+AzaZ+A3aZ, qux=ﬁaz+P26z+P36z,

0x, Y, 0z,
and the analogous one that is obtained by replacing:

Al, AZ, A3, pxx; pyx; pzx; Pl, PZ, P3, QXx; ny; qu
by

Bl, BZ, B3, pxy; pyy; pzy; Ql, QZ, Q3, qu; ny; qu;
and then by

Cl, CZ, C3,pxz; pyz; pzz; Rl, RZ, R3, QXz; Qyz; qu ’
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respectively, with the quantity A having the same expression as it did in sec. 53. We
obtain the transformed relation:

- J ” L (XA +YA, + ZA; + Lu, + Mu, + Nuy)dxdydzdi

+J‘t’z J‘J‘S (FA, +GA, + HA, + 1u, + Ju, + Ku,)dodt

{m it bt + 2, +§u3>dxdydz}j
1, d oA oA oA oA
_.[1 .”J.so(p” a}; +D, ayl + D, aZ1 +p,, aXZ ++p,, ay3

Adﬂ Bd& Cdi
Adt Adt Adt

2 ou ou ou ou ou
e N e e e R
4 So 0x ay 0z 0x 0z

JPduw Qdu, Rdu,
Ade A de A dx

N v L G+ +7
WS WP TP T T A ST\ TP N A )

[ny‘ +de A dy

jdxdydzdt

jdxdydzdt

in which the integrals are taken over, on the one hand, the time interval between the
instants #; and 7,, and, on the other hand, the surface S of the medium (M) at the instant ¢,

and the domain it bounds, with d o designating the area element of S.

Once again, we apply the GREEN formula to the terms that refer to the derivatives of
A, Ao, A, o, ps With respect to x, y, z, and an integration by parts (1) of the terms that
involve the derivatives of A;, A2, A3, w1, o, w3 with respect ¢, and let [, m, n denote the
direction cosines of the exterior normal to the surface S at the instant 7 with respect to the
fixed axes. Since A, A, A3, w1, o, w3 are arbitrary, they become:

F =Ip, + mpy + np.,, I =g + mqy, + ng.,
G =Ip,y + mpy, + np;,, J = lq.y + mqyy + nq.y,
H = Ip..+ mp,, + np_, = lg; + mqy; + nq,
0 op,., 0 1 dA
p”+p)+p” —d——X 0,
0x ay dz A dt
Py B S 108y,

0x ay dz A dt

" Since the field of variation actually varies with ¢, we perform that integration by parts by the intermediary
of passing to the variables x, Yo, 20. We suppose that A is positive and equal to IAl.
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) p,. 9 1
pxz_l_ p}«»_l_ pzz _dC

—-Z =0,
0x ay 0z A dt
0 dq,. 9 1 P B
qxx + q}' + qzx + pw _ pz\: d gﬂ __% —_ L = 0,
0x ay 0z "TAdt Adt Adr
aqu aq}'y aqz_\f 1 dQ A dZ C dx
+ + +Py Dyt ——— = =0,
0x ay 0z : A dt A dt A dt
0 9q,, 9 1dR B A
qxz’, + q¥ + qzz + pxy _ pyv +_d _@__Q_ =0.
0x ay 0z i T ANdt Adt Adt
The significance of the eighteen new auxiliary functions p., ..., Gx, ... result

immediately from the relations that we just wrote. Indeed, it is clear that the coefficients,
Dxx> Pays Pxz Of [ 1n the expressions of F, G, H represent the projections onto Ox, Oy, Oz of
the effort that is exerted at the point M on a surface whose exterior normal is parallel to
Ox, and that the coefficients g.., ¢, g of [ in the expressions for I, J, K are the
projections onto Ox, Oy, Oz of the moment of deformation at M relative to the same

surface.

64. Exterior virtual work; theorems analogous to those of Varignon and Saint-
Guilhem. Remarks on the auxiliary functions that were introduced in the preceding
paragraphs. — On a deformed medium (M) between the instants #; and #, in an arbitrary
state of virtual deformation, we give the name of external virtual work to the expression:

o)

67T, = - { mg (A8'x+B&'y+C'8'z+PoI'+Q8J +R 6K ’)dxodyodzo}

- J HS (F)0Xx+ G0y +H} 07+ 1,0'+ J,0]' + K,0K )do,dt
[ [ R+ Gy + HSZ + 101 + J3o) + K 0K b, dydz,d.

We refer to the notations of sec. 60, and, moreover, let dl, &J, K be denote the
projections onto the fixed axes of the segment whose projections onto Mx',My',Mz' are

01',6J',0K’' in such a way that one has, for example:
—6]=a”§a’+/)’”§/)”+}/”§}/’=—(a éa”+/))§/))” III
in which we are always supposing that the axes in question have the same disposition.
This being the case, suppose, as in sec. 63, that one has given the arbitrary functions

A, Ao, A3, o, s the significance that is defined by the formulas:

M=dx, h=0y, =&, =0, w=0ad, u=0K.
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We then see that the preceding relations we obtained between the new auxiliary functions
express only the following condition:

If a trajectory of the deformed medium is given any of the virtual displacements of
sec. 60 then the external virtual work J1. is given by either the relation:

t2 d0x 00x d0x 90y 907
-07, = +p, +P,. +p., +otp —
¢y H-[So(p” ox Py dy P: 0z Py ox Pa: dy

Adox Bddoy Cdoz
e —
Adt ANdt A dt
+.[tz J'J'J- a0l N a0l N 90l N 0] s 00K
N s, q ox 9y, ay q . Py 4q sy ox q 0z
P dol Q doJ R R doK
A dx A dc A dx

§ Cdy Bdz Adz C dx
_.[1 .”‘J.so{[pﬂ ~ Py +XZ_XE I+[pzx ~ Pt AE—XZJN

jdxdydzdt

jdxdydzdt

+ [ Py =Py +——— ——jéK }dxdydzdt

in which the integrals are taken over the time interval between the instants t; and t, and
the deformed medium, or by the relation:

6T = .[tz .UJ- aéx aéx FA, d0x +B, aéy +C, a_éz
So X, ayo " 0z, axo 0z,

x d(5y
+A dx,dy,dzdt
dt d d j 0@Yodz,
.[tz ”'.[ 851 85[ +P aol +0, 65] +R, d0K
f 995, dy, 0z, axo 9z,
dol d(SJ d(SK
+P + dx,dy,dz,dt
i 0 i j XodYod<
I a2 ve, Do, 2 yc
995 ox, y, 9z, dt
_p % _p 9% _p % g B s dydzdt
ax, , 0z, dt

) d 0 d d
_.[j J.J-LO(AI axzo + A, a;; + A, aZ +Azj

-C, -C, -C, —C%Jdldxodyodzodt
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) d d d d
- ”LO(BI 2orp e g

ox, ay, "0z,

in which the integrals are taken over the time interval between the instants t; and t, and
the undeformed medium at the instant t, because the formula that we gave above:

8T, = - { i L (A'S'x+B'6'y+C'8'z+PSI'+ Q6] + R’(SK’)dxodyOdzo} 2

h

([ (Fjox+Gioy+H6%+ 1,01+ T80 + Ky0K Ydodt
4 So 0 0 0 0 0 0 0
+J’t’z J‘J'J.S (Fo'é’x+G(;§/y+H(’)(§’Z+I(’)§I'+ JS‘SJ,"'K(’)éK')dedyodzodt,

which serves to define the external virtual work, may also be written:

5T = - { [I]. (A6x+BOy+COz+POI+001 + R(SK)dedyodzo} 2

h

— .[:2 ”SO (F,0x+ G0y + H 6z + 1,0l + J ,0] + K, 0K)do,dt

+ J:z J.”;O (X()dx + Yoéy + Zoéz + Loél + Mod] + NoéK)dxodyOdZOdt,

by virtue of the significance of Xy, Yo, Zo, Lo, Mo, No, Fo, Go, Ho, o, Jo, Ko, A, B, C, P, Q,
R, and likewise:

8T, = —{”J.S(féx+§§y+%§z+§(51 +%<§J+§(5K)dxdydz}

4

~ [ [[, (Fx+ Gy + Hoz + 161 + Jo + KoK )d e

+ .[,2 ”J'S (XOx + YOy + Zz + LAl + MOJ + NOK )dxdydzdt,

by virtue of the significance of X, Y, ..., N, F, G, ..., K.
Start with the formula:

o[ [[[. oWdx,dy,dz,dt + 5T, =0,

applied to an arbitrary part of the medium that is bounded by a surface Sy and the time
interval between the instants #; and #,. Since W must be identically null when the
variations dx, dy, &z are given by the formulas (60) of sec. 61, namely:
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o = (a1 + az — wsy)dt,
Oy = (a2 + wsx — anz) o,
& = (a3 + wy — wx)dt,

by virtue of the invariance of W under the group of Euclidean displacements, and &I, dJ,
JK are given by:
ol = w o, o = wndr, oK = ax0t,

and that this is true for any values of the constants a,, a», as, @, a», w; we conclude from
the expressions for §7; that just insisted on (') that one has:

{[ | L Adx,dy,dz, } + j | LO Fydo,dt -] [ L X dxydyydzdt =0,
{”LO (P + Cy - Bz)dx,dy,dz, fz + .[: ”SO (I, +H,y-G,z)do,dt

L 7oV =0,

and four analogous equations. In these formulas, one may imagine that the frontier Sy is
variable.

The auxiliary functions that were introduced in the preceding paragraphs are not the
only ones that one may imagine. Upon confining ourselves to their consideration, we add
the same simple remarks as in sec. 54.

By definition, we have introduced two systems of efforts and moments of
deformation relative to a point M of the deformed medium at the instant 7. The first of
them are the ones that are exerted on surfaces that have their normal parallel to one of the
fixed axes Ox, Oy, Oz before deformation. The second are the ones that are exerted on
surfaces that have their normal parallel to one of the same fixed axes Ox, Oy, Oz after
deformation. The formulas that we indicated give the latter elements in terms of the
former; however, by an immediate solution, which we will not elaborate upon, one
inversely obtains the former elements in terms of the latter.

Now suppose that one introduces the function W. The first efforts and moments of
deformation have the expressions we already indicated, and one immediately deduces the
expressions for the second ones. However, in these calculations, one may specify the
functions that one must introduce according to the nature of the problem, and which are,
for example, x, y, z, and three parameters ) A1, Ao, As, by means of which one

n

expressesa,a’,--+,y".

' The passage from the elements that are referred to the unit of volume of the undeformed medium and the
area of the frontier Sy to the elements that refer to the unit of volume of the deformed medium and the area
of the frontier S at the instant # is sufficiently immediate that it suffices to confine oneself, as we have done,
to the first, for example.

% For such auxiliary functions 4;, 4,, 43 one may take, for example, the components of the rotation, which
makes the axes Ox, Oy, Oz parallel to Mx',My',Mz',respectively.
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If one introduces x, y, z, A1, A, A3, and if one continues to let W denote the function
that depends on xo, Yo, zo, the first derivatives of x, y, z with respect to xo, Yo, 20, f On
A1, A2, A3, and their first derivatives with respect to xo, yo, zo, ¢ that are obtained by
replacing the various quantities &, 7;, &, pi, ¢i, i, & 1, C, p, g, r in the function W(x, yo,
2.t & i, G, pi, qi, i, & 1, & p, q, r) by the values they are given by formulas (54), (55),
(54"), and (55"),then one will have:

Ao A AT AT
0— 0— 0— 0—
ax, ay, 9z, dt

B =0, B= . =0 =il
5 9 ol 5 y
ax, ay, 0z, dt

¢-2, -2, -2, ¢,
592 592 592 54
ox, y, 9z, dt

o - ow oW _aW

7
apl apl apl

o - ow oW 4

oA T e T aa
apl apl apl

- ow 0w oW
e o T
dt dt dt

65. Notion of energy of deformation and motion. — We must remark that our
present exposition contains the statics of deformable media as a special case. Indeed, it
suffices to consider a reversible virtual modification, in the sense of DUHEM, instead of
envisioning a realizable virtual deformation, as we have done.

This observation leads us to consider the notion of the energy of deformation and
motion. We propose to determine the work done by external forces and moments, as well
as external efforts and moments, of deformation that depend on an arbitrary time interval
for a real modification. For this, it suffices to calculate the elementary work relative to
time dt. The latter is:

U1, @+ ¥y +-odvdvdz, - [[, @&, +nGy+-dorfir.



192 THEORY OF DEFORMABLE MEDIA

If one replaces X;.Y,, --,F,,G;, - ,by their expression as a function of the action,

and if one performs an inverse calculation to the one that led us to their definition, then
one immediately obtains, by virtue of the CODAZZI equations:

I (45 2 o, f,

in which we have set:

pogdW W oW oW oW W

& on g ap dq ar

In particular, if one considers the case in which W does not contain ¢ explicitly, in
ow . . . . .
such a way that o is null, then the preceding value becomes the differential with
t

respect to time of the expression:
[ L Edx,dy,dz, ,

which may be called the energy of deformation and movement at the instant t.

At this point in the discussion, we need to make several important general remarks
that will find further application in what follows in the theory of Euclidean action.

The only notion of Euclidean action of deformation and motion that suffices for us
furnishes, in a very extended case, a constructive definition of the quantity of motion and
the moment of the quantity of motion, the effort and moment of deformation, and the
force and external moment. One may distinguish a dynamical part and a static part in the
force and the external moment by grouping, on the one had, the terms that contain only
the dynamical acceleration, and, on the other hand, the terms that contain only what one
may call the kinematical acceleration; this distinction obviously expresses an extension
of ’ALEMBERT’s principle. Similarly, suppose that external work is null, and that the
energy of deformation and motion remains invariant in time. We thus obtain the notion
of conservation of energy, which simply translates into the hypothesis that the medium is
isolated from the external world. In turn, we recover all of the fundamental ideas of
classical mechanics, and it is manifest that the particular form that they take in the latter
context must be what one envisions for the state of motion and deformation in an
infinitesimal neighborhood of the natural state, in which one supposes that W and its
derivatives are null.

66. Initial state and natural states. General indications on the problem that led
us to the consideration of deformable media. — In the foregoing, we considered the
trajectory of the deformed state, and, after describing the initial position (My) of that
deformed state at a definite instant 7, we referred it to the position (M) at an arbitrary
instant z. Considerations that are analogous to the ones we developed in sec. 56, and in
which the parameter that was thus introduced is now replaced by time r may be repeated
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here if we make one of the deformed states play the role that we attributed to the initial
state (M)).

However, one may also imagine that the functions x, y, z that determine the trajectory
of the deformed state depend on one parameter, and that one distinguishes a particular
value of this parameter. One thus defines a sequence of states that one may call natural
states, and their trajectory may be called the trajectory of natural states. One may use
the new parameter as we did in our Note sur la dynamique du point et du corps invariable
and study, in particular, the trajectory of the deformed states that infinitely close to the
trajectory of the natural states.

Conforming to the previous indications, suppose, to fix ideas, that the external force
and moment are given by means of simple functions of xo, yo, 20, #, the elements that fix
the position of the triad Mx'y’z’. We may consider the equations of sec. 62 that relate to
the external force and moment as partial differential equations that relate to x, y, z and
three parameters A, A, A3, by means of which one expresses «,a',---,y". This viewpoint

is the one that presents itself most naturally. The expressions &, #;, &, pi» gi» i, & 1, & p,
q, r will be functions of — 0x ay az @ Q % A ~~-,%,~-,%,-~- (setting 0 = xo,
ap. dp. dp. dr dt dt ap; dt

02 = Yo, 03 = 20, as always) that we may calculate by means of formulas (54), (55),
(54" and (55").

Suppose that X,.Y,,Z;,L,,M,,N,, or, what amounts to the same thing, X,, Yo, Zo,
Lo, My, Ny are given functions of xo, yo, 20, t, X, ¥, 2, A1, Ao, A3. After substituting the
values of &, ..., r;, &, ..., r that one deduces from formulas (54), (55), (54') and (55'),the

expression W is a definite function of:

ax dz dx dy dz A, 6/'1q dﬂ., dﬂ.z d&
X, s ,Z ,t,_,... .o
0Yo2% ox, oz, dt dt dt Aot A oz, dt T dt T dt

that we continue to denote by W, and the equations of the problem may be written:

a ow N a ow N d oW K d oW
0y 5 0% "y, o X oz, o 0x di gdv
ox, ay, 9z, dt
a ow a ow g oW d oW
+ + +— =
0, aal 9y, aﬂ 9z aal dt a@
ox, ay, 9z, dt
a ow a ow g oW d ow
+ + +— =Z,,
0, aﬁ 9y, aﬂ 9z, aﬁ dta@
ox, ay, az, dt
9 oW 9 W 9 oW d W oW
0x, a% 9y, a% 0z, a% dt 6% A,
ax, ay, 0z, dt

=L,
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iaW +i ow +i ow +i ow _GW

0x, a% 9, a% 9z, a% dt a% oA,
ax(] ay(j aZO dt

iaW_l_iaW_l_iaW_l_iaW _aW_N.

9%, a% a9y, a% 9z, a% dt a% a4, o
a‘X"O ayo aZO dt

=M,,

in which £y, My, N are functions of xo, yo, 20, ¢, X, ¥, 2, A1, A2, A3 that result from the
definitions of sec. 63. This pertains to the formulas of the preceding paragraphs directly,
in a way that is more immediate than the definition of the Xo, Yo, Zo, Lo, Mo, Ny may

be summarized in the relation:
(SJ: HL Wdx,dy,dzydt + 6T, =0,
ie.,in:
(5.[: J .[ J.so Waxydy,dz,dt

=[], (Adc+ By + Cox+ PO, +00%, + ROA sy, |
[ [, (F0x+Gody+ Hdz+ T, 0% + T,0% + Kyok)dodi

SJUIILL CXOx KOy 4 Z,02 4 L0 + M, + NS dydegd.

67. Notions of hidden triad and hidden W. Case in which W depends only on x,
Yo, 20, t, &, i, G, & 1, &, and is independent of pi, gi, ri, p, ¢, r. Extension of the
classical dynamics of deformable bodies. The gyrostatic medium and Kkinetic
anisotropy. — The considerations that we exposed previously in regard to the hidden triad
and hidden W are also applicable to the deformable medium in motion. It suffices to
simply add that a hidden W will correspond to a hidden motion.

In particular, we shall examine the case in which W depends only on the quantities xo,
Yo, 20, t, &, mi, &, & m, £but not on the pi, g, ri, p, g, r. The equations of sec. 66 then
reduce to the following:

g ow a oW g oW d oW ow
+ + +— =X,, —+ L, =0,
dx, aﬂ 9y, aﬂ 0z, aﬂ dt a@ o4
ox, ay, 9z, dt
d 8W+8 8W+8 ow +i8W=O, ﬂ+/\/lo=0
0, aal A aﬂ 9z, aal dt a@ 94,

ox, ay, 9z, dt
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a Jw a oW a oW d ow ow
+ + +— =Z,, —+ N, =0,
0, aﬂ Yy aﬂ 9z, 4 9z dr a@ 94,

ox, ay, 9z, dt

in which W depends only xo, yo, 20, t, ﬂ, a_x @ ﬂ E,/L,Az,}%, and they show

ax, ox, dt dt’ dt
us that if we take the simple case in which Xy, Yo, Zo, Lo, Mo, N are given functions (1)
of xo, yo, 20, 1, ﬁ,-",ﬂ,@,ﬂ,g
ox, dx, dt dt dt
be solved for A, A2, A3. One thereby finally obtains three partial differential equations
that, by our hypotheses, refer only to xo, yo, 20, ¢, and to x, y, z, and their first and second
derivatives.

4,4, , A, then the three equations on the right may

Imagine the particular case in which the given functions Lo, Mo, N are null; the

same will be true for the corresponding values of the functions in any of the systems:
(Ly,M,,N,), (Lo, Mo, No), (L, M, N). From this, it results that the equations:

w_aw o aw
A, A, A,

amounts to:

e, W oW _p_p 9 g pd oD
ax, , "0z, ax, dy, 0z, dt dt

A az+A2 0z + A, 0z _c, 0x _c, 0x _c, ax=C@_A£,
ax, dy, 0z, ox, dy, 0z, dt dt

B g M g O g, D Al _pdx

ax, , 9z, dt dt’

i.e., to:

1( dz dy
-p,=—|B=-C™
Py ™ P A[ dt dt

1(  dy dx
=Dy =—"| A—-B—|,
Py = Py A[ dt dtj

which one may interpret as saying that the motion of the deformable body in question,
which constitutes the classical theory of elasticity as a special case, gives rise to a
moment whose three components are:

1 dx dz
s T FPx T, C__A_ 4
j P = P A[ dt dtj

"To simplify the exposition and to indicate more easily what we are alluding to, we suppose that Xy, Yy, Zy,
Lo, My, Ny do not refer to the derivatives of A;, A, As.
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A[ dt dt

b )

THEORY OF DEFORMABLE MEDIA

dx

ax P _
di

l[c AQJ,
A dt dt

i[A
A

and thus has the effect of destroying the equalities:

Pyz =

Having said this, we observe that if one starts with a trajectory that is supposed to be
given and deduces the functions Lo, Mo, N, as in sec. 63, then, in the case in which

these three functions are null one may arrive at the result that accidentally presents itself,
1.e., for a certain set of particular trajectories; however, one may arrive at this for any
trajectory (M) as a consequence of the nature of the medium (M), and its motions, i.e.,

from the form of W.

Imagine the latter case, which is particularly interesting; W is then a simple function
(1) of xo, Yo, 20, ¢, and ten expressions &1, &, &, Vi, 12, V3, @1, @2, @3, v? that is defined by

the following formulas:

2
1| ox
£ — | +|—=
2 |\ ox, 0x,,

Pzy» Pzx = Daxzs Pxy = Pyz -

0z

2 2
| 2 2
+|— | —1y=—(E*+n’ +cl -1,
J (aon } 2(51 n +s )

1] ox dy 0z 1
2 2{(83)0} (ayoJ ( )’OJ } 2(52 7463 =D
o) (v (o2 1
X 'y z ) . i
3 2{(‘%0} (aZoJ (GZOJ } 2(53 Ny +¢5 =1
ox dx  dy dy 9z 9z
i ' ¥ = 5,85 + 115 + 6,63,
1 dy, 9z, 9y, 9z, 9y, 9z, 2 Sy + 1,15 + 6,65
ox dx dy dy 0z 0z
= + + —EE 4 N ,
Y 0z, dx, 0z, 0x, 0z, OX, 361 T 151, + 656,
0x o0x dy dy 9z 0z
= + + —EE + N ,
" ox, dy, 0x, dy, 0x, 9y, 152 T, + 6,6,
dx ox dy dy dz dz
= = 88 ), 66
VS ox, diowy  drox, S0 TS
dx ox dy dy dz oz
= A = 8, ), + 66,
V2 it oy, i ay, diay, Cor TS
dx ox dy dy  dz 0z
= = 8 ] + GG,
= 0z, dt 9z, dt 9z, 3 H 1775 + 665
dz

1%

RORCR

" The triad is completely hidden; thus, we may also imagine that we have a simply pointlike medium.

2
—| =& +n’+c .
dtj E+n +¢

dx
dr

)
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The equations deduced in sec. 62 and 63 reduce to either:

aA/ li li A/ li li li ! li li li
Z —~4+q,C! -rB] +d—+qC -rB' = X, F) =1,A +m,A, +n,Al,
p, dt ;
aBl li li Bl li li li ! li li li
Z —L 41 A -p.C] +d—+rA—pC =Y, G, =1,B] + m,B, + n,B.,
p, dt ;
C li

9P

i

a / ! ! ! ! ! ! !
Z( -+ piBi/_CIiAiIJ-l- ddc +pB -qA =Z,, H, =1,C, +mC, +n,C;,
t

in which one has:

a a j ja}/k a¢l
Bi'=77iaW+77k aW+77j aW+778W, (i,),k=1,2,3),
de, Iy, e 99
Cl=c¢ 6W+§ re 6W+§6W
i TS k ?
de, dy, Ty, T oy
1 oW ow
A,=—_ + i
v v s zé:' 0Q;
ow ow
B,=__ + )
v v 277, 0@,
1 oW ow
C,=__ + o
v v ° d 0@,
or to:
0A
0A, 04, 04 dA_ Fy, =1, A +myA, +n,A,,

ox, dy, 9z, dt 0
dB, 0B, 0B, dB
+ +—+

— =Y, G, =[B +m,B, +n.,B.,

axo ayo aZO dl’ 0 0 01 02 03
aC

0C, , 9C, L 9C dC _, H, =1,C, +m,C, +n,C,,

ox, dy, 09z, dt 0

in which one has:
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with analogous expressions for Az, B,, C», Az, B3, C3 and

A=q)lax+q)26x+q)3ax 1 W dx
0x, 0y, dz, v dv ar’
B=q)lay+q)26y+q)3ay 10W dy
0x, 0y, 9z, v v dt
C-o, 0z + D, 0z ‘D, 0z +lawg,
0x, ay, dz, v 0v dt
upon setting:
0¢; 97, a%

or again to:
0 .,
P D, +6pzx 1dA
0x ay 0z A dr

op, dp, Ip, 1 dB
P + Py + Py +——=Y, G=lp,+mp, +np,,
ox dy oz Adt |

9 op,
D + Pr + apzz ld_c =Z, H = lpxz +tmp,, +np,,
0x ay 0z A dt ' ' '

X’ F=lpxx+mpyx+n’pzx’

in which one has:

2 2 2
po—tlo || Lo | Lo || fog, B X, Hy X &
A 0x, Y, "\ 0z, 0z, 0x, ox, 9y,

+| D, 0x +D, 0x +D, 0x ﬁ,
0 0z,

dt
{axayanayanay

1
P =g 0x, dx, W e 9z, 02,
e d0x ay dx dy e dx ay dx dy e dx ay dx dy
ayo 0z, azo ay, azo ox, axo 0z, axo ay, ayo ox,
+| D, 9y +D, 9y +0, 9y ﬁ,
ox, ay, "0z, )dt
1 9z 9 dz a 9z a
pzx = _{ 1__y Q Y 93 Y
A dx, 0x, ayo ay, 0z, 0z,

_(az ax 9z axJ _(az, ox 0z axj _(az ox 0z axJ
+E, + +E, + +E, +
dy, 9z, 0z, 9y, 0z, 0x, dx, 0z, ox, dy, 9y, 0x,

+| D, 92 +D, 92 +0, 02 ﬁ,
ox, ay, "0z, )dt
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with analogous expressions for p.y, pyy, Pzy, Pxzs Pyzs Pz - We thus obtain the most general
equations of motion for the classical deformable body.
In order for the effort to satisfy the relations:

Pyz = Dzy, Pzx = Daxzs Pxy = Dyx,

it is sufficient that one has:
@1 =0, ¢ =0, @ =0,

i.e., that W is independent of the arguments ¢, ¢, ¢3. More particularly, if one must
have:

pyz:pzyzos P =Px=0, pxy:pyxzo’
then W must be a simple function of A and v, and one finds that:

o _IW
Pxx = Pyy = Pz oA

one then finds the motion of a perfect fluid in this case.

When the functions £y, My, MNp are not null, W will have the twelve translations
&, ni, &, & n, £ for its arguments. On the one hand, the medium may be regarded as
gyrostatic, by giving a justifiable extension to this word, which was coined by LORD
KELVIN, and, on the other hand, the medium is endowed with kinetic anisotropy, in the
sense envisioned by RANKINE and then by LORD RAYLEIGH. For example, one

therefore makes the theory of the double refraction of light, such as was exposed by
LORD RAYLEIGH and GLAZEBROOK, rest on a purely mechanical basis.



V.- EUCLIDEAN ACTION AT A DISTANCE,
ACTION OF CONSTRAINT, AND DISSIPATIVE ACTION

68. — Euclidean action of deformation and motion in a discontinuous medium. —
Consider a discrete system of n triads in which each triad is distinguished by an index i

o1

that consequently takes the values 1,2, ...,n. Let M x;y,z; be the triad whose index is i,
with an origin M; that has the coordinates x;, yi, zi, and axes M ,x;, M,y;, M x, that have
the direction cosinesa,,c,as B, 8,5 y,.v!,y! with respect to three fixed rectangular
axes Ox, Oy, Oz. We suppose that the quantities x;, y;, zi,@;, ¢, --,y, are functions of
time ¢, and we introduce the six arguments &, #;, &, pi, gi, r; that are defined by formulas
(54") and (55") of sec. 60 with the index i.

Envision a function W of two infinitely close positions of the system of
triads M ,x]y/z,, i.., a function of 7, of x;, yi, zi,,,cx,,-+-,y/, and their first derivatives
with respect to ¢ (i takes the values 1, 2, ..., n). We propose to determine what sort of
form W must take in order for that function to remain invariant under any infinitesimal
transformation of the group of Euclidean displacements such as (60). Observe that the
relations (54") and (55') of sec. 60, with the index i, permit us to express the first
derivatives of the nine direction cosinese,,a;,---,y, with respect to ¢ by means of well-
known formulas that involve these cosines and p;, g;, ri, and, on the other hand, to express
these nine cosines «;,,a/,---,y; by means of &, 1;, &, and the first derivatives of x;, y;, z;
with respect to . We may therefore finally express the function W that we seek as a

function of ¢, of x;, y;, z;, and their first derivatives, and finally, of &, ;, &, pi, i, ri, which
we indicate by writing:

dx, dx. dx,
W=W t,xi, ,'aZ,'a_la_la_la iol]isSis Vi ,'ar,' .
[ YisZp S & 1:,6:5Pi+q j

Since the variations 6&, dn;, 6&, dpi, &q;, Or; are null in the present case, as a result of
the well-known theory of moving frames, we must write the new form for W that one
obtains by virtue of formulas (60), when taken with the index i, and for any a;, a, as,

wy, Wy, W3 :

) ) dz.
z aWéx,.+6W<5y,.+6W(5z,.+ w éﬂ W @+ oW s 2.
~| ox, ay, 0z, 9 dx,  dt 5 dy, dt 5 dz,  dt
dt dt dt
. . . dx, .dy, .dz. .
Replace dx;, dy;, dz; with their values in (60) and 67’,67’,67’ with the values
t t t

one obtains by differentiating them. Equate the coefficients of ai, a2, a3, an, an, ws; we
obtain the following six conditions:
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) Wy W W
T 0xX; A 7 0z,
and
dy. dz,
(64) D yiﬂ_ziﬂ.,.l oW _dz oW -0,
9z, dy, dt 5 dz; dt 5 dy,

dt dt
with analogous relations.
If we suppose that the points (xi, yi, zi) describe all possible trajectories then we
arrive at identities that verified by the function W of the 6n arguments of x;, yi, z,

dx, dy, dz, . .
7’,%,7’, and the last arguments &, #;, &, pi, i, ri, which we leave aside for the
t t t
moment. We seek to discover the resulting form for W.
We commence by treating the case of the system of three equations:

A ow ow
Vi—=%—|=0,
i=1 9z, dy;
4 ow ow
65 ——x,— | =0,
(65) ,Z=1: “ox, ' oz
@ oW aw)
i=1 i ayl i axt ,

that determine a function W of the 3n arguments x;, y;, z;. We have already encountered
this system in the context of the statics of the line, surface, and continuous three-
dimensional medium, in the case where p =1, p =2, p = 3. We leave aside the case p =
1, in which the three equations reduce to two. For p = 2 and p = 3, we have three
equations that form a complete system. For p =2, we have three equations, six variables,
and three independent solutions:

xl.z + yl.2 + zl.z (i=1,2), X1X2 + Y1y2 + 21225
for p = 3, we have three equations, nine variables, and six independent solutions:
Xl.z + yl.2 + Zl.z (l = 1, 2, 3), XiXi + yiyi + ZiZi (l = 1, 2, 3)

For p > 3, the system is still complete. To prove this it suffices to show that they admit
3p — 3 independent solutions, in which the number of equations is 3 and the number of
variables is 3p. We effectively have first, the p solutions:

xP+yl+z] i=1,2,...,p),
then the solution:
X1X2 + y1y2 + 2122,
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and finally, the 2(p — 2) solutions:
xX1Xi + yiyi + 212, X2Xi + Yoyi + 223 (i=3,4,5,.,p),

which are independent. W is thus a function of the 3(p — 1) independent arguments that
we just enumerated.

Now return to the proposed system that is formed from conditions (63) and (64). The
conditions (63) prove that W depends on xi, ..., Xu, Y1, --.» Yns 21, ..., Zn ONly by the
intermediary of the expressions:

Xo=x-x1, X3=x3-Xx1, ..., Xy=X,-x1,
Yo=y-yi, Y3=y-yi, ..., Y=y, -1,
L=n-2, LB=3-2, -n Ln=Zn—2.

On the other hand, set:
dx; dy;, _ dz;

T T Ao n+i? —=Z
dt dt dt

n+i?

and demand that equations (64) be verified by the function W of the arguments X», Xj,...,
Xon; Yo, Ya,..., You; 22, Z3,..., Zp, . For example, consider the first of equations (64); they

become:
(GW oW GWJ (aW oW GWJ
-y + +ooot +Z, + +oot

0Z, 07, 0Z, Y, dY; Y,
ow ow
+ -Y)——-(z,-Z,))—+---=0.
(yl 2)822 ( 1 2) oY,

y1 and z; disappear, and what remains are the first of the equations:

2 aw oW
STy 28

Vi < =0,
i=1 9z, a9y,
& oW oW
i — x,’ - | = Oa
i ox; 0z,
& oW aw
i . yi | = O
i=1 ayl ax

We thus come down to the system (65), in which x;, y;, z; are replaced by Xi,i, Yisi,
Zis1,and p by 2n — 1.

If we first suppose that n = 2, then we see that W is abstractly given in terms of the
arguments &, 7;, &, pi» ¢i» I as a function of the independent expressions:

X +Y7+Z; = —x)" + (0, - y)* +(2, - 2)°,
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dx d dz
X +Y2+Zz—( 1) (;;1) (dl‘l 51 +771 +§1,

dx dy dz
X2+Y2+ZZ - 2 2+ 2 2+ 245\2 - 2+ 2+ 2,
LY +Z, (dt) (dt) (dt) & +1; + 6,

dx dy
XX, +YVY. +Z,Z. =(x, —x,)—- + L+ (z,-z)—+
243 2453 22y =(x, l)dt (¥, yl)dt +(2, l)dt

dx dy

XXy 4 BYet 222, = (5 =) P O =007 (G = 2) 7
XX, +YgY4+ZQZ4=ﬂdx2 +@dy2 dZI de
; ‘ ‘ dt dt dt dt dr dt’

Therefore, we finally have that W is a function of &, 7, &, pi, qi, i, and the four
arguments:

(X _XI)Z +(y2 _yl)2 +(Z2 _Zl)z

dx dy dz
(=) g+ On =0+ G m )
dx dy dz
(xz_xl)d_tz"'(y yl) dl2 (Zz_Zl)d_tza

dx, dx, _I_@dy2 dz; dZ2
dt dt dt dt dt dt’

If we suppose that n > 2 then we see that W is abstractly given in terms of the
arguments &, 7;, &, pi» ¢i, 1 as a function of 6(n — 1) independent arguments:

(x; _‘xl)z +(y, - y1)2 +(z; - Zl)z (i=12,--,n),

X} +Y +Z] = ? ? ?

XoX3+ Yo Y3+ 2073 = (x2 - x1)(x3 - x1) + (V2 - y)(¥3 - y1) + (22 - 21)(z3 - 20),

(x2—xl)(x3—x1)+(y2—yl)(y3—y1)+(zz—zl)(z3—Zl),
X, X +Y, Y, +Z,Z, = dx dy dz
g g g (xz_xl)d_tk'l'(yz_yl)d_tk"'(zz_Zl)d_;a
(x3_x1)(x,'_x1)+(y3_y1)(y,'—y1)+(z3 Z)(Z Z])a

dx dy dz
(x3—x1)7t"+(y3—yl) dtk (25 Z) L

XX, +YY, +Z,7, =

We remark that one has:

(G =x ) =x )+ (0 =y ) =y ) +(z =2,z —2;) =20 +1 = 10),
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in which r is the distance between two points of the system. From symmetry reasons, one
may have to involve arguments in W that are not independent, in which case, one may

take, independently of the &, 7, &, pi, i, i, the following arguments:

==X () (5 )
d_x dx dyl dy, dZi de

1//:',' - - ’
dr dr  dr dr dr dt

=(x; - x; )dd— +(y, -y ) +(z,-2;)—;

the latter subsume the arguments with three indices A;; and arguments with four indices
Aix. They figure only when there are more than two points, and one sees that the action
on two points is influenced by all of the other points in this case. It is easy to establish
the relations that exist between these dependent arguments in a form that is sufficiently
complex; they are analogous to the relations between the distances r;; when the number of
points is = 5.

If we know the expression for the Euclidean action W in a the system of triads in
question, then, by a calculation that repeats the ones we made before, one may easily find
the expression for the external force and moment on an arbitrary triad. Since the action

dx, dy, d .
W is a function of x;, yi, zi, ; ;’ dZ by the intermediary of r;, ¥, Ay, it is easy to
dx, dy, d
regard W as primarily a function of x;, y;, z, ; ;’ dZ and of &, n;, &, pi, qi» ri. We
t
have:
0 :2 Wt

= {Z(Aiéxi + By, +C.0z, + POl + Q.0], + RIK, )}

h

_.[tZZ(Xiéxi +Y,0y, +Z.0z, + L.l + M.0J, + N.5K., )dr,

in which we have set:

A,=aaW+/3’,»aW+}’,aW, Pl=ai6W+/),laW+ylaW,
&, an, — 9g Ip; g, o

B - 1,6W+/),i,6W+ l,aW, 0, - l,aW /),l,aW+ i,aW,
agt 6771 agl apl a i al

Ci_ t”aW-I-[)’i”aW-l-yi”aW’ Rl_ t//aW+[)’iﬂaW+yiHaW’
agt a’?t a i apl agt art

in which (A;, B;, C)) and (P;, Q;, R;) are the quantity of motion and the moment of the
quantity of motion, respectively, for the triad of index i, and:
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Xi=%+i oW _ﬂ, Li=£+ci@_3iﬁ’
dr  dt a@ ox, dt dt dt

dt
Yi=@+i —aW _ﬂ, Mi=@+Aiﬁ_Ci&’
i dr| dy; |y, dt dt dt

dt
i=£+i oW _ﬂ, Ni=@+Biﬂ_Ai@’
dr  dt aﬁ 0z, dt dt dt

dt

in which (X, Y;, Z;) and (L;, M;, N;) are the external force and external moment of the triad
of index 7; what remains in these calculations is to exhibit the arguments r;;, ¥, A, but
this is easy.

We remark that the expression for the external force may be decomposed into two
parts. The first, which depends on the segments (A;, Bi, Ci), (Pi, Qi, R;) and their
derivatives, is the properly dynamical part. The second, which results from the presence
of the arguments r;, ¥, Ajx in W corresponds to the force that the triad of index i is
subject to on the part of the other triads of the system. Consider the expression:

dx, dy, dz.
E X —+Y—"+Y —+L(ap +6.q +y.r
{ 1 dl’ 1 dl’ 1 dl’ l( lpl ﬁlql }/l l)

+Mi(ai/pi + ﬁi/qi + }’,'/r,') +Ni(ai//pi + ﬁi//qi + }/i”ri)]dt’

i

which represent the sum of the elementary works of the forces applied to the different
triads. If we calculate them upon replacing X;, Y;, Z;, Li, M;, N;, with the preceding values
then we find the following expression for the elementary work relative to the dynamical
part of the external force and the external moment:

d(_ow oW oW 9w oW oW
Dl S At A Pt G+
~| dt\ " d&, on, ac, ap, aq, or,

1 1 1 1 1

_[oW dE, owdy, W dr dt,
65,» dt (977[ dt ar’ dt

and, for the elementary work due to the forces that are exerted between the triads of the
system, we have:
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S| L) AW v W dz W

+
~\| dt| dt a@ dt a@ dt aﬁ
dt dt dt

oW dzx,.+ oW dzy,.+ oW dzzi+aW@+aW@+aW&
g @i dt* o dyi di* o diod® o dx; dt o 9y, dt 9z, d
dt dt dt

If we add these two expressions, and set:

on G, op, dg. ' or,

1 1 1 1 1

ow ow ow ow ow ow
E=Z(§i 65 +17; '+§i + p; +q; +7;

G0 OW  dy, W dz, W
dt jdx, dt jdy,dt dz;
dt dt dt

then we see that the sum of the elementary works is:

dE+ﬂdt,
ot

in which we suppose that W is independent of 7, and when we give E the name of energy
of motion and position for the system of triads in question, we obtain a proposition that is
entirely analogous to that of sec. 65.

From the foregoing, it is easy to deduce a system dynamic that is established on the
same basis as the classical theory, but without limiting ourselves to central forces, as in
the latter case. Moreover, the actual exposition presents the advantage of associating the
diverse laws of force at a distance that were studied by GAUSS, RIEMANN, WEBER,
and CLAUSIUS ('), who uniquely introduced the arguments r;;, %, 7 to their true
origin.

69. The Euclidian action of constraint and the dissipative Euclidian action. —
The considerations that we must develop in regard to the Euclidian action at a distance
lead to the notion of constraint in a natural manner, a notion that was due to GAUSS and,
as one knows, was applied by HERTZ to the study of the foundations of mechanics by

' See R. REIFF and A. SOMMERFELD, Encyclopddie der Math. Wissenschaften, 52, pp. 3-62.
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f(l)llowing a path already explored by BELTRAMI, R. LIPSCHITZ, and G. DARBOUX
).

To simplify, let there be a point that describes a definite trajectory by the three
functions xo, Yo, 20, and time ¢ when its movement is free. On the other hand, denote the
functions of time ¢ that describe its trajectory when it is subject to constraints by x, y, z.
We may envision the two points (X, Y, Z), (Xo, Yo, Z), whose coordinates are obtained,
for example, by the formulas:

2 1d2
Xoxt P Le ~ar, X0=x0+dx°dt+— 2o dr?,
dt 2 dt dt 2 dt
dy 1d2y 2 dy, 1d2)’o 2
Y=y+—dt+———=dt", Y, =y, + dt +— dt”,
YT 0= T
dz 1d’z

d 1d’
Z=z+ a2, Zy =g 4 dr 2 dr?,
dt 2 dt dt 2 dt

which provide the TAYLOR development up to the first three terms. If we assume that
the constraints are frictionless then we may demand that at the instant # in question one
has:

dx dx, dy dy, dz dz,

xzxa = ,ZZZ,_ s s .
O YEI IO T AT dr dt

Having said this, the introduction of the notion of constraint due to GAUSS amounts
to replacing r by its value, where r denotes the distance, after having considered the
Euclidean action at a distance U,(r) in such a way that one is led to the function U of the
argument y that is defined by the formula:

(@Y (dy_dv Y (4 dn)
4 dt*  dt? dt*  dr? N

If we then apply the method of variable action, we have:

2 2 2 2 2 2
(5U=2{(5d X _ 54 x°j+y(éﬂ-éﬂj+z(éd 2_s4 ZOJ,

> dr dt* dr? dt? dt?

in which we have set:

" BELTRAMI, Sulla teoria generale dei parametric differenziali, Mem. Della R. Accad. Di Bologna, Feb.
25, 1869.

R. LIPSCHITZ, Untersuchungen eines Problemes der Variationsrechnung, in welchem das Problem der
Mechanik enthalten ist, Journ. fhr die reine und angewandte Mathmematik, 74, pp. 116-149, 1872;
Bemerkung zu dem Princip des kleinsten Zwanges, ibid., 82, pp. 311-342, 1877.

G. DARBOUX, Lecons sur la théorie générale des surfaces, 2™ Part, Book V, Chap. VI, VII, VIII, Paris,
1889.
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yoLdU(dx d’x, _ldu(d’y d’y, Z_ldU(d’z d’4 |
ydy\ dt*  dr’ ydy\ dar* dr* )’ y dy\ d*  ar?

If, with GAUSS, we call the argument y the constraint then the force X, ), Z may be
called the force of constraint that is applied to the point (x, y, z), and may be regarded as
having the effect of impeding the free motion of the point; on the contrary, the force — &,

— YV, - Z has the effect of changing the free motion into the constrained motion.

The essential difference between the present conception of force and the one that
results from NEWTON’s laws of motion is the following: in the latter form, one
considers the action relative to two infinitely close positions — one present, one future —
on the same trajectory; in the conception of GAUSS and HERTZ, the action is referred to
two future positions: one on the trajectory we called free, the other on the trajectory we
called constrained. In the two cases, one obviously has a theory that permits us to predict
the future motion, which is the object of point dynamics. However, in addition, and this
is the point that we would particularly like to clarify, the action is Euclidean.

On the subject, it is interesting to remark that GAUSS has explicitly established an
agreement between the action of constraint and the law of errors, which has the same
form in effect. One therefore sees that the fundamental character of the law of errors is
the Euclidean invariance of that law, and that the new branch of mechanics, which was
created by MAXWELL, BOLTZMANN, and W. GIBBS in the name of sratistical
mechanics, may likewise receive the deductive form that we propose to give ordinary
mechanics here.

We may further observe that the forces of constraint translate into an indeterminacy
that is the product of the definition of the force, and which leads to the introduction of
LAGRANGE multipliers, just as in the mechanics that one derives from NEWTON’s
ideas as in what one deduced from the notion of GAUSS constraint.

GAUSS’s idea may also be applied to friction by envisioning a Euclidean action on
the two points:

X -x+ B X, = x, + 5o g1,
dt dt
dy dy,

Y =y+—dt, Y, =y, +——dt,
y i 0= Yo d
z-+%a, 7, =25+ F0 a1,

dt dt

in which the point xo, yo, zo refers to a free trajectory, and the point x, y, z refers to a
trajectory that is traversed with friction. As we are dealing with sliding friction here, we

d. dx, d dy, d d
mustset:x:xo,y:yo,Z:ZO,_x=ﬂﬂ @ _ P dz_ 4

, u , u . We are then led to
dt dt dt dt dt dt

2 2 2
a function of the velocity v, = \/ (%J + (%J + (%J for the action, affected with a
t t t
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factor 1 — u, which corresponds precisely to the notion of the dissipation of the free
action at a point xy, Yo, 20-

The arguments rj;, ¥, Aix that we considered in sec. 68, translate, by definition, into
an analogous idea with regard to a triad we take to be isolated in the system of n triads in
question. One may, if one prefers, distinguish between these arguments, and say that r;;
is a potential argument, and that i, A;x are dissipative arguments. The central force
hypothesis thus amounts to considering only the dynamics of systems without friction at
a distance in mechanics. From the arguments r;j, ¥, Ajx, one may, on the other hand,

dr,
derive the particular argument of WEBER 7’ ,and if one passes from the discontinuous
t

medium to the continuous medium, in which the concept rests on the consideration of ds*
for the space, then one finds oneself led to introduce the viscosity arguments
ae, , aé, , de, , ar, , ar, , e in the action W. Beside such arguments, which were
dt dt dt dt dt dt
envisioned for the first time by NAVIER and POISSON, one must obviously also place
arguments such as the argument & & + n17p + £ &, which was considered in sec. 47, and
arguments such as @i, ¢, @3 from sec. 67. We confine ourselves to these summary
indications on viscosity, which has not been given further study in a sufficiently
systematic manner up till now.




VI. - THE EUCLIDEAN ACTION
FROM THE EULERIAN VIEWPOINT

70. The independent variables of Lagrange and Euler. The auxiliary functions
considered from the hydrodynamical viewpoint. — In the statics and dynamics of
deformable media, we took xo, Yo, zo, and xo, Yo, 20, t, respectively, to be the independent
variables. In the former case (statics), one lets xo, yo, zo denote the coordinates of the
point M, of the natural state (M) by imaging that this natural state is deformed in an
infinitely slow fashion so that its points do not acquire any velocity, and passes from the
position (My) to the position (M) in a continuous fashion (1). In the second case
(dynamic), one lets xo, Yo, Zo denote the coordinates of the position My at a definite instant
to of the point that is at M at the instant 7. The position (My) of the medium plays a
particular role.

The deformable medium (M) has been considered to be generated by a triad Mx'y'z’,

whose origin M has the coordinates x, y, z, and whose vectors have the direction
cosinesa,a’,a"; B,B'.8",y,y ,y" with respect to the fixed axes Ox, Oy, Oz. In the static
case x, y, z,a,a ,---,y" are considered to be functions of the independent variables xy, yo,
20, and, in the dynamics case, as functions of the four independent variables xo, yo, 20, ?.
In either case, we say that the independent variables imagined are the LAGRANGE
variables, and if we would like to make this concept specific we demand that:

(66) x = x(xo, Yo, 20), y = y(xo0, Yo, 20), Z = 2(x0, Y0, 20),
or:
(66") x = x(xo0, Y0, 20, 1), y = y(Xo0, Yo, 20, 1), Z = 2(x0, Y0, 20, 1),

and, similarly, we have either:

(67) 05=a(xo,yo,Zo), 05/=a/(xo,yo,Zo), a”=05”(xo,yo,Zo),
or
(67" a=a(x,,Y,29.1), & =a(Xy,Y0,201), A" =a"(xy,Y,:2051)s

with analogous formulas for S,8',8",7,r".y".

However, we may now imagine that one performs a change of variables on the
independent variables. In particular, by analogy with what one does in hydrodynamics,
we may imagine that one takes x, y, z, or x, y, z, f to be the independent variables. We
then say that we are imagining the EULER variables.

What is the fundamental question we must ask? In the theory that we just developed,
where one considered that question to be either the question of defining the elements of
force, etc., or, conversely, that of determining the position (M), we encountered the

" In this conception of the infinitely slow deformation of a medium, which is analogous to the reversible
transformations of thermodynamics, we have defined the external force and moment, the effort and
moment of deformation that one may qualify as static, and then the work done in passing from (My) to (M),
and, consequently, we obtain the notion of the energy of deformation, which is placed beside that of action,
which we started with.
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functions x, y, z,t,a’,-+,y" of xo, yo, 20, or of xq, Yo, 2o, ¢ that are defined by (66), (67), or
by (66),(67"). Imagine that one solves equations (66) or(66") with respect to xo, yo, Zo;
one has:

(68) X0 = Xo(x, y, 2), Yo =Yo(x,, 2), 20 = 20(X, ¥, 2),
or
(68") X0 = xo(X, y, 2, 1), Yo = Yo(x, ¥, 2, 1), 20 = 20(x, ¥, 2, 1),

and, substituting these in (67) or (67"), we have:

(69) a=a(x,y,z), a' =a'(xy,z2), a"=a"(x,y,2),
or
(69" a=a(x,y,z,t), a' =a'(x,y,z,1), a"=a"(x,y,z,1).

We presently know the functions xo, yo, 20, @,c',---,y" of x, y, z, or of x, y, z, ¢, and,
conversely, by solving (68), (69) or (68),(69")one will then pass to (66), (67) or to
(66"),(67").

However, one must complete the statement that must be made by observing that in
either case it may be convenient to introduce the auxiliary functions.

If we imagine the case of LAGRANGE variables, it may happen that the functions x,
v, z do not figure in the question explicitly ") it may therefore be convenient to introduce
the first derivatives of x, y, z with respect to xo, yo, zo, Or with respect to xo, Yo, 20, t as
auxiliary variables (*). In this case, by imagining x, y, z,a,a',---,y",one may also

introduce the translations and rotations &, ..., ri, &, ..., r as auxiliary functions if only xo,
Yo, 20 OT Xo, Yo, 20, t figure in the givens.

If we imagine the case of the EULER variables then we may indicate analogous
circumstances in which the use of the auxiliary variables may offer advantages. First,
suppose that the hypotheses that we must consider for the LAGRANGE variables are
realized. We may preserve the indicated auxiliary functions. The only essential
difference from the preceding case resides in the ultimate determination of formulas (66),
(67) or the analogous ones, if one performs them. If we suppose, furthermore, that xo, yo,
7o do not figure in the question then we may introduce the derivatives of xo, yo, zo With
respect to x, y, z or with respect to x, y, z, f as the auxiliary variables.

Following these indications, one sees that there may be some use for the equations
that served as the point of departure since they were presented in a convenient form from
the standpoint of the auxiliary functions. One observes that this goal is already attained
by the equations that we previously obtained, in which the auxiliary functions &, ..., ri, &,
..., r already figure.

' This is what normally happens if one starts with results like the ones given in our exposition and if one
does not modify the expressions of force, etc., by virtue of the formulas (66), (67) or (66"),(67"); indeed,
the letters x, y, z do not figure explicitly in W.

* These auxiliary functions are actually coupled by relations that are easy to form; the same remark applies
in general. They are not introduced in hydrodynamics, where the auxiliary functions are derivatives with
respect to just the variable # (and where the use of these auxiliary functions is often limited to the case of
introducing the EULER variables).
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71. Expressions for &, ..., r; (or for &, ..., r;, & ..., r) by means of the functions
X0, Y0, 20,,a -+ ,y" of x, y, z (or of x, y, z, 1) and their derivatives; introduction of the
Eulerian arguments. — From the explanations that must be given, it results that it may be
useful to have expressions for &, ..., r;or for &, ..., r;, & ..., r, which are evaluated, no
longer in accord with formulas (66), (67) or (66),(67"),which suppose that xo, yo, zo Or
X0, Yo, 20, ¢t are independent variables, but in accord with formulas (68), (69) or
(68"),(69"), which introduce the functions xo, yo, z0, ¢, &’,-+-,y" of x, y, zorof x, y, z, t.

We think about the case in which ¢ figures in a general manner. The formulas
obtained give, in particular, the case in whichx, y, z, @,c',--,y" are independent of z. By

virtue of (66),(67"), the quantities &, ...

are calculated by the formulas (1):

E=a 0x +a' 9y +a" 02 , &= a@+a dy a”@,
p, ap, p, dt dt dt
ox ' ay y 0Z " dZ
70 = + + , n=p— —
(70) R el vt /jdt dt L
o ox oy ay oy 0z _ dx Q Y @
& yap,. 4 ap, 4 ap,.’ S dt 7 dt 7 dr’
-y, 9 _ 9 %__ dy
p; Zyap,. Z/japi’ Zy DB o
ay ap da
71 =Ygt =- /. a =- —
(1) 4=, vy h¥% o 9T > o
da s dp
7= — = X = —==> a—,
' Z/japi 0p, Z/j dt

(in which o = x0, 02 = Yo, 03 = 20), and these are calculated by means of xo, yo, 20,
a,a',---,y" and their derivatives with respect to x, y, z using formulas (68"),(69").
To that effect, we shall show that the quantities &, ..., r;, & ..., r, which will

henceforth be called Lagrangian arguments, are simply expressed by means of the
following auxiliary functions, which we call Eulerian arguments:

E)=alEl+aln]+a’lc,], (&) - %

(72) (77[)=ﬁ[§,’]+ﬁ/[77,’]+ﬁ”[gi]a (77 -
’ ’ a 3
) =7E1+yIn1+71c], ()= ’;

! We use the habitual notations for the derivatives with respect to t. (See e.g., APPELL, Traité de

Mécanique, T. 111, 1* ed., pp. 277).
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(p)=alpl+allgl+a’lr], (p)= Zy— - —Z/f

(73)  4(q) = Blp1+Blg1+ B'Ir], <q>—2a—“ Ejaf

(r.) =ylp.1+ylg;1+y'Ir1, (r)=2/a’§= _ZQE

in which we have set:

00. . )
AP [.1= L1, [c,1="£x,

_N, 98 _ N p97 _N, 98 _ N p97 _N, 98 _ 5 507
[pI]—Z}fax Z/J’ax,[ql] Z}/ay Z/J’ay, 1] Z}’az z/jaz’

with analogous formulas for [p:], [¢2], [r2], and for [ps], [g3], [3] that are obtained by first
changing 7, B into ¢, y, and then into 3, ¢, and we employ the well-known notations (')
a 8/3’ ad }/

ot ot ot
We differentiate relations (68") successively with respect to the LAGRANGE

variables; they become four systems of three equations that, by virtue of notations (70)
and (72), one may write:

(75 &(E) +m(m)+ &G =1,  §& +n(m) +&&) =0,  ( rk),

(§)+§(§1)+77(771)+§(§1) =Oa
(76) () +&(&,) +n(,) +¢(s,) =0,
(©)+&5(&) +n(;) +5(5;) =0.

By virtue of the preceding relations (75) (as well as things that result from formulas
(78) given before), the last three relations (76) may be written:

(5) + 51(5) +§2(77) +§2(§) = Oa
(76") ) +1,(E) +n,(1) +15(5) =0,
©)+5(E +s,(m) +55(5) =0.

Once we solve equations (75) and (76), we observe that we may replace these
systems with equivalent systems that are obtained by differentiating relations (66") with
respect to the EULER variables x, y, z, f successively, and which, by virtue of notations
(72), may be written (upon multiplying by &,a’,a" and adding, etc.).

' See APPELL, Traité de Mécanique, T. 111, 1" ed., pp. 277.
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dx 0x ox
“—Z(fi)api, ﬁ_z(ni)a_,q’ }’=Z(gi)a—pi,

! "= a_y - ay "_ ay
(75") a _Z(é-‘,»)api, B Z(m)—api, B z(g")_ap,.’

n_ ﬂ r_ ﬁ "_ ﬂ
a —Z(&)api, y z("")ap,.’ y Z(s‘,»)ap,

i

to which we adjoin (76"). By multiplying system(75") by &,c'," and adding, etc., it may
also be written:

zgl(gl) = la 25,(77,) = Oa zgl(gl) = Oa
(75") 2mE)=0, Y m@)=1, Yn(5)=0,
zgi(gi)=0’ zgi(ni)=1a zgi(gi)=1'

Once again, observe that the following form, which implies (75), is intermediate
between (75") and (75), and ultimately results from formulas (70) combined with (75) and

formulas (74):
a=YEEL B=2nlE). v=2clE],
(75" a'=Y &) B =2mnl. B =Yclnl,
a'"=Y Elcl, r'=2nlal. r'=2clsl

One sees that the Lagrangian arguments are functions of only the Eulerian arguments and
conversely (at least as far as translations are concerned).

First determine the Lagrangian arguments by means of the Eulerian arguments. Let A
denote the determinant:

51 771 g] a( ) a a/ a//

A= n, & which is &, if |8 /5/ /))// -1
a(xoay(),ZO) f ”
53 773 §3 }, }/ }/

Let&,n.¢!.& .1m,.65,5,1.65 be the coefficients of the elements of the determinant

A, i.e., the minors given a convenient sign, which therefore amounts to setting:
& =165 =155 M =65 -65, si=&n-&m,, ...

Upon solving equations (75) with respect to (&), (), (&), (&), (n), (£, and then
substituting in (76), one obtains:
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& _ S +mm+ gt
(5[)_ A/, (5)_ / A/ /a
(77) (77,»)=%, (77)=—§§2+77;72+§§2,
N _EE +mm; + s,
()= A (€)= A ;

Conversely, determine &, 7;, &, & 1, £ as a function (&), (7, (&), (8), (17), (£). We
observe that the determinant whose elements are A(&), A(7), A(&) is the adjoint

. ) 1 ) .
determinant (1) of A, in such a way that we must let Zdemgnate the determinant:

| &) @) )
(78) Z= (&) (1) (5
(&) (13) (53)

Solve formulas (75) and (76) with respect to &, n;, &, & 1, £ Upon designating the
coefficients of the elements of the determinant (78) by (£)),()),(<!),they become (*):

E=AE), E=-M©EE)+mE)+()NENDY,
(79) n, =A®m), 1n=-A(E)m)+ @) +()m)}s
i =A), ¢=-M©E))+)+ ()}

We now propose to determine the rotations.
Differentiate relations (67") with respect to x, y, z, t. While always employing the

well-known notation for derivatives with respect to time, we have (3):

da _ da 0x, N da dy, N da 9z,

ox dx, o0x dy, dx dz, 0x ’

' This adjoint determinant is the square of A.

? The first nine formulas of (79) ( = 1, 2, 3) are true if one considers the known consequences of the theory
of adjoint determinants. It is clear that all of the present calculations may be attached to the theory of forms
and to that of linear substitutions.

da Ja
> We distinguish — from — ..., consistent with the notation employed by APPELL, Traité de
dt ot
dx dy dz
Mécanique, T. 111, pp. 277. As for xy, Yo, 20, we do not need to introduce —L ,—0 ,—0 ,since they are
dt dt dt

zero. One observes that the present xo, Y, zo, t are functions of x, y, z, ¢, which, when equated to the old x,
Yo, Zo, define functions x, y, z that are thus implicit functions. We shall return to this point later.
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da  da ox, N da dy, N da 9z,

9

a_y ox, dy dy, dy 9z, 0z
da _da 0x, N da dy, N da 9z,
dz dx, dz dy, dz 0z, 0z
da  da ox, N da dy, N da dz, da

ot ax, ot dy, ot 9z, ot dt

9

9

n

with analogous formulas for the cosines £,y,---,y".
The formulas (74) then give:

[p]=D plE] [pd=D qlE],  [ps]=D nl&],
AEDNAUAL [9,1=Y q,[n.]1, AEDNAUAR
[n1=> pils], [r,1=> gl [r1=> rls],

and, using formulas (72), formulas (73) give:

P) =2 p(E). () =2a:(E). ;)= r(&),
(q1)=zpi(77i)a (q2)=zq,'(77i)a (q3)=zri(77i)a
(80) (r1)=zpi(§i)a (r2)=zpi(§i)a (r3)=zpi(§i),
(p)=pi(&)+ p,() + p5(S) + p,
(@) =q,(&) +q,() +q;(5) +q,
() =nr@+nm+nr)+r,

which give us the latter Eulerian arguments (p;), (g:), (i), (p), (¢), (r) by means of the
Lagrangian arguments (it suffices to replace (&), ... with their values).

Conversely, to obtain the latter Lagrangian arguments p;, ..., we may solve the
system (80), but one may also directly differentiate the relations with respect to xo, yo, 20,
t successively; we have:

da _da ix  oady  oa
ox, 0x dx, dy dx, 0z 0x,
o aaax+a_aa_y+a_aﬁ,
dy, 0x dy, dy dy, 0z 0z,
o aaax_l_a_aﬂ_l_a_aﬁ,
0z, 0x 0z, Oy 0z, 0Z 0zZ,

da _dadx dady dadz da
dt  ox ot 9y ar oz ot ot

After taking (70) into account, relations (71) then give us:
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P = (p1)§1 +(611)771 +(I’1)_§1,
(81) q, = (p)& +(g,)n, + ()5,
n = (p3)§1 +(CI3)771 +(r3)§1a

which one may write in the intermediate form:

ox ay 0z
=[P+l 4 ]
Py Py ox, q, ox, 1 ox,
0x ay 0z
=[p,1—+lq,] +[r]—,
q, )2 ox, 2 ox, 2 ox,
ox 0 0z

B o=y 4 gy 2+ [,
0x, 0x, X,

217

with analogous formulas for ps, g2, r2; p3, g3, r3 that one obtains upon changing &, n1, &,
into &, 1p, &, and then into &, 733, &, or upon changing x into yo, and then into zo; one

has, moreover:
p=(p)E+(q)n+(r)s +(p),
81) q =(py)&+(q,)n+(r,)s +(p),
r=(p;)& +(q)n +(r;)s + ().

72. Static equations of a deformable medium relative to the Euler variables as
deduced from the equations obtained from the Lagrange variables. We have already
performed the passage from the LAGRANGE variables to the EULER variables in the
context of the statics of deformable media. It will suffice for us to complete the results so

obtained (*).
We found formulas such as the following in sec. 53:

Ap . = A+ A+ A, Ag. . = P+
D ax, Ay, - 9z 1 0x,
Ap =2+ 24, g Ag, = 2p+ g Dp
0x, ay, 0z, 0x, 0 0z,
Ap, = Ba s Ba By Ag, =2 Py
0x, ay, 0z, 0x,
in which one has:
Al=aaW+/jaW+yaW, R=aaw+ﬁ
agt 877, agl apl

' We then seek to obtain the definitive results directly.
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Suppose that W is expressed by means of the arguments (&), (7)), (&), (p), (q), (ri),
and set:

W=AQ.

By virtue of the formulas (77) of the preceding paragraph, one will have:

W09,
a&, a&,
w02
877, 8771
W _ N2,
¢, a¢;

QF - A{E . 9(&)},

1

1

9,

i

Qg = A{g—g +Q(s))

i

and, as a result, since A does not depend on p;, g, ri:

&

Upon differentiating relations (75) with respect to &, one gets:

(&) an;) (s )
0E +1]; 0E + Y -(&)),
from which, one deduces:
a(&;)
0, T Y
)
a—é-'i_ &)
i)
g (&)
and then, by the relations (80):
a(p;)
IE
a(q;)

d&,

A=A aaQ+/3’aQ +yaQ+Q[§,.]
afj an, ¢,

P =A a— /3’— @ .
op, aq, ar,.

Q) = A{j—g . Q(m)},

!

(é:k a(n,) a(sy,)
5 JE, 1 9, T &,
&
A— &)E),
ni__
A )&,
Si (- \(E )
A (€ )(&));

)5

=0

i= ),
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a(rj)
o8

=-(p)(S;),

with analogous formula for the derivatives with respect to i, G. If one sets:

0Q 0Q 0Q
Ay 2 By - ch=22
) (&) (5 a(n,) ) a(s;)
0Q 0Q 0Q
Py 92 R)=2
(l) a(p;) @) a(q;) (&) a(r;)

then one has:

L=

A
~[{EX(AD + (7,)(B)) + (¢ HCDHE T+L(ENR) + 7,)(Q)) + (6)(RD P, ]

+{(ED(A) + (17,)(B;) + (6 NCHIET+{(ENP) + (17,)(Q;) + (6 )R} P, ]
+{(ED(A) + (17,)(B;) + (6 NC)HET+{ENP) + (17,)(Q5) + (6 )R 511

By virtue of the formulas (72), (73), (74),(75"),and upon letting [A;], [B:], [C]; [Pi],
[Qil, [R:] denote the components relative to the axes Ox, Oy, Oz of the two vectors whose
components with respect to the axes Mx',My' ,Mz' are (A)),(B)),(C})); (P),(Q)),(R]),one
deduces the following three formulas:

Po =Q-YIAlET- D (PP,

Py = -2 BIEI-Y [Q]1lp],
p. = - [CIET-D [R]p].

with analogous formulas for B;, C;, and pyy, pyy, Py, Pxz» Pxz> Pxz - One then has:

1 0Q 0Q 9L
Z3=a%§%um+““amo+@ﬂam}

TR A RS

aQ e Q ) ag}
apy) gy A

+/J’{(§,») Q Q ag}

+ y{(&)

and, again taking (75"), into account, we obtain the following three formulas:

G = o P1] + BIP2] + AP3],
gyx = A O1] + ALO-] + N O5],
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Gz = d[Ri] + fIR:] + ARs],

with analogous formulas for Q;, R;, and q.y, Gy, G2y, Gxzy Gxzr Gz

73. Dynamical equations of the deformable medium relative to the Euler
variables as deduced from the equations obtained for the Lagrange variables. — We
have also performed the passage from the LAGRANGE variables to the EULER
variables in the context of the dynamics of the deformable medium. We shall first
complete the results so obtained.

A; is augmented with:

>

{a @), gE 6(5)} Q| {a o), 590 a(p)} 0Q
&, a7, dg; | (&) a&; a7, dg; ) a(p)
+{aa(m+ PLON 6(77)} 00 +{aa<q>+ i) | a(q)} 00
9§, a7, ag,; | a(m) a&; a7, ag; | 9(q)
+{a 0S) , 536, a(g)} 00 +{a o), o) 30| 02 }
08, " am, " ag, Jao) | eg T an, 7 ag, ot

however, from (76) and (80):

ag & __ & __
SE P &), s, (&)@, oE, (&)©),
Ip) _ Ip) _ Ip) _

0E (P&, oz, (P, Py (P(©),

with analogous formulas, in such a way that if we set:

0Q2 0Q2 0Q2
Ay=Z2, (B)=—=, (C)=—,
“) (&) ) v) © 9(5)
0Q2 0Q2 0Q2
Pr = ’ = Rr -
) a(p) ©) a(q) ) a(r)

then we must add

A, A(p, AD,

respectively, to the given values of A; ,i =1, 2, 3, that were given in the last paragraph,
where we have set:

—% = (ANIE 1+ (B)IE 1+ (CHIE T+ (P)HIp, 1+ (@) p, 1+ (R ps].
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The expressions that we add to the values of py, pxy, px:, of the preceding paragraph are
therefore:

é 0x 0x 0x é ﬂ a_y a_y
A{(&) o, +(n) o, +(5) azo}’ A{(&) o +(n) o, +(5) azo}’

A 0z 0z 0z |
Z{@ o, +(n) o, +(5) o }

however, from the values (76) of (€),(n),(C), one has:

&) a‘”‘ + () a‘”‘ +(©)- o =—§2(§>——n2(m>ﬂ—g2<gi>a—x

Xo Yo 2o

d dy
(é—')axyo+<n>ay0+<g> =—§Z(§>—— Z(m)——gZ( >
(r;-')a‘f +<n>a"’y +<g> =—§Z(§>——n2(m>——g2< >—

i.e., by virtue of formulas (75") :

O i)™~ _as+ py+ o),
0x, ay, 0z,
O )2 e )2 - e+ i),
0x, ay, 0z,
0z 07 0z " " "
O )L LB o e+ ey,
0x, ay, 0z,

in such a way that the expressions that we must add to the p.., px, p.. of the preceding
paragraph are:

_Adx _Ad _Ad&
Adt’ Adt’ Adt’
One will have analogous expressions for p,y, ..., p.,... by the obvious change of A

into two analogous expressions B and C that are deduced by reducing the [&], [p:] by the

corresponding quantities 7], [¢:] and [&], [ri].
We now introduce the notations A, B, C; we show that they are identical to the

notations introduced in the Lagrangian theory:

Indeed, one has:
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A 0E)  Ln 0D ()
<" {(A) 0e HE) +(R>a§}

ﬁ{(A)a(g:) } {(A)a(é-‘) }

However, from formulas (76) and (80), one has:

&) _ _ 9 _ _ 9Q) __
Y &), y: &), Py (&),
Ip) _ () _ ) _ _
—ag (p)s _a§ (p,)> PP (P3)s

and analogous relations for 7, £. By virtue of relations (72), we obtain:
A ! ! ! ! ! !
A (A& 1+ (B)IE 1+ (CHIE T+ (P)p 1+ (@)p, 1+ (R)ps].

Similarly, for the P, Q, R of the Lagrangian theory, namely:

one has, by virtue of the relations (80):
P ! ! !
A a(P)+ p(Q)+y(R),

Finally, consider the modification that must be made to the formulas of the preceding
paragraph in order to have the g, ... relate to the actual case of dynamics.
The quantities that we have called P; are augmented for i = 1, 2, 3, either by:

ey ey ap) 0@, 1, el 00
A_(P){a o ny PP an} (Q){ o }+<R >{a " }

A (p'>{aa(p>+/f’(1’>+y"’(”>}+(Q'>{az(_‘1>+..}+(1ef>{aa(”+.-}

L ap, 0q, or, P> ap,
A (pf>{af’(l’>+ﬁf’(1’>+yf’;1’>} © ){ a<q>+_,}+(R,) ai’;rh..}
L P3

ap;

ap; 0q, r
or by

A a(P) + B(Q) +r(R)}
Am{a(P) + Q") +y(R)}
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A{a(P) + B(Q) +7(R)},
by virtue of formulas (80). One sees that these increases are:

P&, P(n, P(D.

The expressions that must be added to the values of g,., gxy, gx; of the preceding
section are thus:

P ox 0x 0x
Z{@ o, + (1) o, +(5) o2 }

Pl oon® ol Pl 0, 0
A{(&) axo+(77) +(5) e } A{(&) axo+(77) ayo+(§) GZO},

9y, 0

i.e.,
P P ! ! ! P ”n n n
—X(a§+/o’n+yg), — (s By, —y (s By,
or finally
_Pax _Pdy _Pd&

Adt’ Adt’ Adt’
One will have analogous expressions for g, ...; g.., ... by changing P into Q, and then
into R.

74. Variations of the Eulerian arguments deduced from those of the Lagrangian
arguments. — With the aim of directly formulating the Eulerian equations that relate to
the deformable medium, we shall calculate the variations of the Eulerian arguments. We
commence by deducing the variations from the Lagrangian arguments in order to verify
them, and then we calculate them directly.

If we apply O to equations (75) then they become three systems like the following
one:

&S &) + mdm) + GA&) = - (5)0& - (1) om - (&) 0%,
SAE) + mdm) + LA &) = - (5)0& - (1) 02— (5) 05,
& &) + mdm) + GA&) = - (5)0& - (m)oms - (8) 0% .

Hence, keeping relations (77) in mind:

- &&) = (& (&)0& + (m)om + (&) 061} + (&(5)061 +...} + (&1 (&) & +...}
= (£)D(E)OE, +11) Y (£)on, +(c))D (§)5,,

or, upon replacing &, dn;, 65 with their values, and taking relations (75") and (80) into
account:
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!

00" loke 90 , ,
; LH(E) ; NES - x+<p2>(5z—<p3>«5y}

Xo Yo <o

6(51) = (771)61(/_(5-1)6-]/_(51){(51)

—) {(51 Y, (&) ‘"jy () a‘zy +(py)0% - (poéz}
(&) {(51 97, &) a(jz &)° - 9% ¢ (p)d - (po«sz},

however, by virtue of equations (75") one has:

00X aéx ox 6(5'x dy 90x 0z
Z(g-') Z(é—‘) = Z(&)api e Z(é—;)a

a(S'x ,00x  ,00%
+a +a
0x ay 0z

=

b

for example. We therefore obtain the following relation:

8(E) = 170K = () —(g-a){a ajxx NPWLLLIPN ajz = (py)d% - <p3>«5'y}

dy

90" ,90" , 00"
—(m){aa—jma—yym Zy+<p2>éx (poéz}

90" ,00" , 00" ,
—(g){a axZ” ayzm ZZ+<p2>éy—<p3>éxz};

in order to find &7:1), A &), it suffices to make a circular permutation of (&), (771), (&) to
replace a,a’,a" with B,8',", and then with y,y’,7", and to replace the p; with ¢; and

then with r;. One has analogous systems of formulas for X&), &), A &); A &), A1),

AG).
By means of (76) and the values for d&, o7, 6, one has, in turn:

(&) =H&6(&)+nd(n,) +g<5(§1)} {(§)0& + (771)577 + (gl)ég}
=—(§ [@—(a&ﬂm yg)——(a§+/577+ yg)—y—(a E+pn+y g)—Z

dt
+{q—<p2>§—(qzm—(rz)g}éz—{r—(p»&—(q»n—(a)g}éy]
[ doy 00" 90" 00

— )| 2L @+ ) T (@ E B y) T (@ E+ By )
| dt 0x ay 0z
+{q—<pg>§—(qon—(a)g}ééc—{p —(p)E = (g - (1)6}0%)
[ do%z 907

- d——(a§+/577+}/§)——(a§+/577+}/§)—y—(a E+p 77+y§)—
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+{p-(p)E= (g - ()Y ={q - (p,)E = (g, - (r,)}0}

however, by virtue of (76), relations (80) give:

P&+ (qn+ (r)E=-{p1(&) + paAn) +p3(0)},
P&+ (qn+ ()= - {q1(&) + q2(n) +g3(0)},
P&+ (gn+ (1) E= - {ri(&) + rn) +r3(0)},

from which, we finally have:

déx dx d6x dy a8k dz a8k , :
6(§>=—<§1>{ . —ﬁ . —;j ” +<q>éz—<r>éy}
_(nl){dé’y_@aé’y_ﬂaé’y_@aé’y_l_

dt dt ox dt dy dt 9z
_(gl){dé'z_@aé'z_ﬂaé'z_gaé'z

dt dt ox dt dy dt 0z

(r)dx-(p)d lz}

+(p)oy - (q)é'X}.

One will get analogous values for & #), A £) upon changing (&), (m1), (&) into (&),
(1), (&), and then into (&), (75), (&).

From (80), we now have:

Ap1) = (E)Pp1 + (&) Ip2 + (&) Ips + p1A &) + X&) + p3 A &),

i.e., by virtue of formulas (75") :

5(1’1) =(611)5K’—(’”1)5J’
aol' , 00l , 0
+a

o'
+a +a + oK' - o]’
™ " . (p,) (p3)
90X ,00% , 00X , ,
—(pl){a—wt —+a —+(p2)<5z—(p3)<5y}
ox ay 0z
90" ,00" , 00" , ,
—(q»{a—y ra' g 2L +<p3>6x—<pl><5z}
ox ay 0z
007 ,007 ,007

_ g g 6, _ 6,
(n){a P +a o +a P +(p))oy—-(p,) z}

with analogous formulas for &q1), &r1), and for &p>), Kq2), Kr2); Ap3), Ags), Kr3).
We have have:

Ap) = dp + (51 + ()2 + () ps + pr1AE) + p2dn) + p3A D),

i.e., by virtue of formulas (75"),(76), and (80):
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_dol' al'dx ol'dy ' dz , ,
Y +(q)OK' - (r)dJ
dt  ox dt 0dy dt 9z dt

déx 96k d 90X d 00X d
—(p»{ TGO Ot O (@)% - (r)éy}

dt  ox dt  dy dt 9z dt
doy asydx dydy 9dyd , ,
(g S-SR ST (16— (p)o%
dt ox dt dy dt 0z dt
_(rl){déz aéz@_aézﬂ_aéz@_l_(p)é,y_(q)é,x}

dt  ox dr 9y dr oz dt

with analogous formulas for g), &r).
Now, we seek to find the formulas that must be established when one introduces the

auxiliary functions ox, dy, oz, dl, dJ, K, which are defined as before. For example, one
has:
d0x 00X 0y 6§Z+8_a§,x+%§,y+8_}/§,z,
0x 0x 0x ox  0x 0x 0x

and analogous expressions for aaﬂ ,aaﬁ ,from which, we have the system:
X o0x

dox | 9y 9% _ ajxx +[p,10Z~[p;10Y,

o +a
0x 0x 0x
aox 0 , 007 90" ) .
pOO | 00 30 _00Y 1 15k~ [p,10%,
0x 0x 0x 0x
aéx /a " aéZ aélZ ! !
4 +y éyﬂ/ = +[p 16y -[p,10x,
0x 0x 0x 0x

and analogous systems for the derivatives with respect to y and z. One has similar

formulas that relate tod1',0J',6K" and oI, &/, K. By virtue of formulas (72), and upon

ron

supposing that the determinant | &@’8'y" 1= 1, one then has:

8) 8 =51 va % o ajxj +(@le, -y, Dl
Z

dx dy
~[n,] aady +a,a(5y +a”a(5yJ+(a [E1-a'[¢, Do
0x dy 0z

a ,a /;a ! n
-lg] @ éz+a éz+a &J+(a[7yl]—a[§l])§l{,
0x ay 0z

with analogous formulas.
The value of & &) that was written on page (?) may be put into the form:
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5(E) = ~(&) {@+ ()55 - (r)éy}
_ (m){ﬂ (MO (p)é'z}

ot
¢ >{% + ()oY - (q)é'x};

however, by virtue of formulas (73) that define (p), (¢g), (r), one has formulas like the
following ones:

—ajtx+(q)(5z (r)dy = aa:x 90y | 9%

+a +a
t ot ot

9

and, as result, by virtue of formulas (72), one has:

(83)

—+lal—

5(8) = [[51 9% , ]"’a‘iy 1 "’a‘fj

.. d

a formula in which one may revert to the derivatives z, as we shall see in detail later
t

on.

By virtue of the formulas that define ox, dy, J&, JI, &/, SK, one has

+[r(q,) - B(r)1dl

X 0x

[ 94l ,00] , 00K
+a(a +a +a J+[}’(q1) B'(r)oJ
dy dy dy

5(p)) = a[a 90l e 90 e aéKj

”n aé[ /aé‘] I/ aéK ”n ”n
ta [a ta j [y"(q,) = B"(r)]o.
{[ dox a0y ( 09 ,a ,,aézJ [ 9% H
-(p) ol a +a +a|la +a +ta|la—+---
0x 0x ay dy 0z

’ adx / " aéz " a_dx
ox ax T (/j + & ay J [/j H
s ){a[}/ aaix +y 90y

a(sx y L0z [ 90 j
+a v +y +a’ly—+-||
0x ay

which, by virtue of formulas (73), may be written

" aéz
+
f51o) , 0 ,,8
—(ql{a[ﬁ BNy LN &
n aéz
+

84 O(p,) - o{a 0 | o3, r39 j +(@r]-a'lg Dol
ox ay 0z
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. a,(a L a(st  (@p ] alr DT
ox ay 0z

+a'"| a 90K +a’ 90K +a’ 90K +(alg,1-a'[p, 1)K
ox ay 0z
dox ,00x , 00X
-[p ] a +a +a
0x ay 0z
ox ay 0z
a0z , 00z » 007
-] « +a +a ,
ox ay 0z

and one has analogous results for 8(q,), ...
Finally, observe that one may write:

S5(p) = 66—(5’+ (@K'~ (P’

~(p, >[ﬁ + ()05 - (r)é'y}
ot
(4 >[f—ty+<r>ésc—<p>é'z}

e >[%+ (p)é’y—(q)é'x}

or.
5(p) =aa(51 ,aéJ v o aétK
00"
~(p) [—x+<q><5z (r)éy}
ot
-(q, )[_at +(r)0x-(p)d 'z}
aé, [ [
—(n)[—ﬁ(p)éy—(q)éx}
ot
or finally:
90l 98]  , 9K 90 0y 90z
85 O(p) = - - - ,
(85) (p) aat +a P +a P [p] P [q,] P (7] o

. . .o.od
a formula in which one may also revert to the derlvatlvesz. One has two analogous
t

formulas for &q), &r).
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75. Direct determination of the variations of the Eulerian arguments. — We
suppose that one subjects the functions x, y, z of xo, yo, 20, # to the variations dx, dy, oz.
Consider the relations that one obtains by differentiating relations (68") successively with
respect to the LAGRANGE variables; from this, we deduce:

o1+ o1+ 0 1416172 1122 4161 9% <

9P, 90 90, 90, 9P, 9P,

however, one has:
ddx I dx N adx dy N dox az

dp, ax dp, dy dp, Iz dp,
a0y _ ddy 0x N a0y dy aéx dy
0p, 0x dp, Ay ap, 0z ap,
a§z=a§zax+a§zay 90z az_
0p, 0x dp, 0dy dp, 0z ap,

if one substitutes the values of these derivatives into the preceding expression then one

has:
ﬂ{é[é—‘ +[E 6_(5x+[ ]a‘sy 61 }
9P, dy 0z

90y aéz}

+[s;]

+a—{6[77, +[§ y +[77,] P, P

1

<

d 6z
+—{<5[§ +[’§ +[77,] éy+[§,»] }=O;
00, 0z 0z 0
the parentheses in this latter equality are thus null, and one has:

SIE ] =—{[§ +[n,]""5y+[g,.]""5z},
dy o)

<

oln;1= —{[é‘ =+ [77,] i +[g,] }
dy dy ay
_ e 9% 90y
dlg;1= {[é’,»] Py +[n;] Py +[§,] . }
Similarly, we have:
dx dy dz dody doz
0(&)=-—10[&§]-—0 -—0 - :
& 0 (£ ] 7 (77, ] 0 (<] [51 —[n,] 0 (<] 7

upon replacing d &1, o m1], [ &i] with the values that we must obtain they become:
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5(5)-@{[5 9dr | ] +lc,) iz}

0
aéy
{[«;-' 17 +1e1? . }
+—{[§ +[77,]a§y+[§,»]a§z}.
0z 0z
—[é—'ld—&—[ 190 4.
dt dt

with analogous formulas for &77), ). To retrieve the formula that we obtained in sec.
74, it suffices to remark that one has:

dox doxdx ddxdy doxdz 0ox
—+ — + —+

dt  ox dt 9y dt 9z dt ot
dyx=8(5y§+a(5yﬂ+a(5y£+a(5y,
dt ox dt dy dt 0dz dt ot
d§z=a§z@+a§zﬂ+8§z@+8§z;
dt ox dt dy dt 0z dt ot

but we will not use the formula on page (?) and its analogues in what follows. Indeed, it
is convenient to observe only the domain of integration of the integrals over x, y, z, which
we consider to depend on ¢, in the case in which x, ¢, z, ¢ are the independent variables,
and not revert to the integrations over x, y, z, and ¢, as is the habitual custom (as with xo,
Yo, 20). If one must integrate by parts with respect to ¢ then one must introduce the
auxiliary variables xo, yo, z0, and use only derivatives with respect to ¢ that take the
form% ,which will necessitate the use of formulas such as the one that wrote above for
&E).

The calculations that must be done in order to obtain &p;), Aq:), Xr), Ap), Aq), Ar),
like the ones that lead to expressions for A &), A7), &), A5, An), KAL), presently rest
upon formulas that we just obtained for [ &], d 7], A &]. The transformation that the
expressions Ap), {q), &Ar), which were given in sec. 74, must be subjected to in order to

o . . d .
put the derivatives with respect to ¢ into the form—,is the same as the one that we

dt
indicated for & &), A7), {&).

76. The action of deformation and motion in terms of Euler variables.
Invariance of the Eulerian arguments. Application to the method of variable action.
— The action of deformation and motion becomes:
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.[jz .[ .[ J;O Widx,dy,dz,dt,

in which W is a function of xo, yo, 20, t; &, %i» G, Pi» qis i & 1, &, p, q, 1.
From formulas (79) and (81),(81"), one may also say that W is a function of xo, yo, Zo,

1. (&), (1), (&), (), (g0, (r2); (&), (1), (9, (). @), (1), and,, if one sets (1):

oY
A

then the preceding action may be written:

.[ B .[ ”.S Qdxdydzdt.

The integration over x, y, z is taken over the medium S, i.e., over a domain that varies
with time.

One may also see how one can arrived at this latter action independently of the
former. Indeed, the Lagrangian arguments are, as we saw before, Euclidian invariants;
however, since the Eulerian arguments are uniquely functions of the Lagrangian
arguments, from formulas (77) and (80), it results from this that they are also Euclidian

invariants,; furthermore, one may establish this in a direct manner by means of formulas
(82),(83) and (84), (85), by setting:

ox = (a1 + wz — wy)dt,
oy = (b1 + wsx — anz)dt,
0z = (c1 + awny — apx)dt,
ol = w6, o = wdt, oK = ws0ot.

From this, it results that one is directly led to give the following form to the action of

deformation and movement in terms of the EULER variables taken over the interior of
the surface S, and during the time interval between instants #; and #,:

.[ - .[ ”.S Qdxdydzdt,

in which the function Q has the following remarkable:

Q(XO’ Yo, 20, I; (é)’ (771')’ (é.l)’ (pi)’ (Qi)’ (ri); (5)3 (77)7 (5)’ (p)’( Q)’ (I’))

Consider an arbitrary variation of the action of deformation and motion in the interior
of a surface (S) in the medium (M), and the time interval between the instants #; and #,,
and, to that effect, give the x, ... the variations dx, ...

' We suppose that A is positive and therefore equal to Al
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For the moment, write the integral in the form:

.[jz .[ .[ J;O Wdx,dy,dz,dt,

its variation is:

JIIL, a0+ Qanydv,dy,dzr,

or:
[°[]] oo+ Q%A)dxodyodzodt.
However:
__9(x,9,2)
a(xo’yo’zo),
SA = (y,z) aéx (y,2) 6(5x+ d(y,2) 6(5x+
9(yo»20) 9, a(zo,xo) dy, 9(x,,¥,) 0z,
_{ 02 x93 dx  a(y.2) ax}a(sx+
0(¥y,20) 0%, 0(Z45%,) 0y,  9(X,,Y,) 07, | 0x
J90x ) 0 9%,
dx dy 0z
i.€e.,

%_ a§x+ 90y N 00z
A 0x ay 9z

and, as a result, the variation of the integral is:

[ {of 25+ 220 2% ol

The variation Q2 of Q is:

0Q = Z{@é(f) ﬁé( n;)+ } ﬁé()

in which & &), &), ..., &r) are determined by the formulas of sec. 74 and 75, in such a

way that only the derivatives with respect to ¢ in the formi are involved. We may apply

dt

GREEN’S formula to the terms that explicitly refer to a derivative with respect to one of
the variables x, y, z. As far as the terms that explicitly refer to a derivative with respect to
time are concerned, here is how we deal with them (the domain of integration over x, y, z

varies with time): let:
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{53 dh
.[l .UJ.S gzdxdydzdt,
be a typical term; if we pass to the intermediary of the variables xo, yo, zo then it becomes

.[tz .UJ. dxodyodzodt

or, on integrating by parts:

mso[é’Ah > dxydy,dz, ~ I [ Sothxodyodzodt
=[.”J. gAhdxodyodZo} jtz ”. Soh(LA)dxodyodZOdt

[m ghdxdydzl j m th Ay dzydt,

when we revert to the variables x, y, z (1).
If we let [, m, n denote the direction cosines of the exterior normal to the surface S

that bounds the medium after deformation at the instant ¢ with respect to the fixed axes
Ox, Oy, Oz, and let dobe the area element of that surface:

of " [[[@dxdydzar
= .[tz j L {Up, +mp, +np_ )ox+(p., +mp,  +np )oy+(p,_ +mp +np_)oz
+(lgq, +mq, +nq. )0l ++(lq,, +mq,, +nq.)o] +(lq,. +mq, +nq_)OK}dodt

{m[ S +—(5y+—(5z+—(51+ Q(S.]+§(5Kjdxdydz}t2

h

. P 6px L. 1dA
(e e ek

ap, op, dp. 1dB
+( Py + p”+ Py +—d—Jéy

0x ay dz A dt

0 op,
+ p”+p”+ap”'+ld—céz
0x ay dz A dt

dA .
' Here one may replace 7 by the value it derives from:
t

ddh 9 fdx) o (dy) o(de
Adt  ax\dt) oy\dt) oz\dt)
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+ —+
0x ay dz A dt
dq. 9dq, 09q..

A s +ld—Q+
0x ay dz A dt

dx dy

0z

d dq,. 9 1dP
qxx+ q}_l_ qzx+_d

aQXZ + aq)'z + aqzz +ld_R+
A dt

Py =Py

ZX_pXZ

Adt Adt

Bdx Ady sl indydzar,
Adt Adt

in which we have set, following the notations of sec. 73:

~(ANE 1= (B)IE,1-(CHI&ET-(PHIp,1- (@), 1= (R)Ips],

=(AN[n, 1= (B)In,1-(CHIns1-(P)Hlg,1-(Q)lg,1- (R)g;],

A_
~-
B _
~-
% = ~(A)[5,1-(B"ls,1- (Chle;1- (PO 1= (@)1 - (R)Ir ],
P ! ! !
F =LP1=aP)+ @)+ (R),
L _101-a'(P)+ @) +1' (R,
R ”n ! ”n ! n !
F TLP1=a" (P4 B1@)+ 1R,
o =Q-SIANE-SIPIp - 2%
XX 1 i i i Adt’
Ady
= - B 1[&]- ) ) [
Py Y IBIET-Y [01lp:] TR
A dz
= - TMETI-D[R1p.1-——
Pa DACIET-D R 1Ip:] N
Adx
= = >[A1]1-)[Pllg]-——
Py D [Al,1-) [P1lg,] N
B dy
=Q- B.1[n.1- Mg 1-==2
P, > [B1n,1->.10,1lg,] TR
B dz
= - 1.1-Y[R1g.]1-——
P, D IC A, 1-Y [R]lg;] N
C dx
= > [Alc1-YI[P][r]-—=
P DAl 1-D [PIIr] TR
C dy
= - B. 1- Nr.]-——=
P, D [B1ls;1-> 10,117 N
C dz

p. == [Clls, -2 [R]Ir]-——,

A dt
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and, in addition:

P dx

=alP, P Pl-—
qxx a[ 1]+/))[ 2]+}/[ 3] Adt,
_ _Pdy
q,. =al0 1+ plO,1+ y[0;] A
P dz

=a[R R R.1-—
qzx a[ 1]+ﬁ[ 2]+}/[ 3] Adt,

with analogous formulas for gy, gyy, G2y, Gxz, Gyzr G2z -

77. Remarks on the variations introduced in the preceding sections. Application
of the method of variable action as in the usual calculus of variations. — We used the
calculus of variations in the preceding section; it is useful to elaborate on the significance
of those formulas according to the approach of JORDAN (').

For the sake of completeness, recall the exposition of JORDAN. JORDAN sought
the variation of

S¢ dxdydz

when one supposes, on the one hand, that x, y, z are subject to variations, and, on the
other hand, that the functions that figure in ¢ are also subject to variation. From this fact,
@ is subject to two variations whose effects are added together. JORDAN successively
considered the variation due to the variation of the functions that figure in ¢, and then the
variation due to the variation of x, y, z that is juxtaposed with the preceding.

One may just as well search for the complete effect of juxtaposing the two variations
on the letters u, ..., Ugp, ... that figure in ¢. If we call these complete variations du, ...
then one will have:

5¢=a_‘p5u+...
ou

for the complete variation g of @.

Having said this, one remarks that the previously calculated variations are what we
must call the complete variations and that the calculations in the preceding section were
carried out from this latter viewpoint.

If one prefers to present things in a form that is identical to that of JORDAN then
here is what one must do. In what follows, we introduce the functions xo, Yo,
20,a,a’,-+-,y",of x, y, z, which figure explicitly and by their derivatives, at least in part.
The functions xo, o, zo of x, y, z, ¢ are the ones that must be used in the left-hand side of
(68") in order to derive x, y, z as functions of xo, yo, z0, . From this, and the fact that x, y,

z are subjected to variations ox, dy, oz, it results that these functions xo, Yo, 20 of x, y, z, t

" JORDAN, Cours d’ Analyse de I’Ecole polytechnique, 1" ed., T. 111, no. 339, pp. 533-535; 2" ed., T. 111,
no. 396, pp. 528-530.
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are also subjected to variations, which we designate (1) by (dxo), ..., and one has the
formulas:

0 0 0
0=(dx,)+ Y0 e+ x°<§y+ xoéz,
ox ay 0z

(86) O=((5y0)+ay° v+ D0 54 Vo5
ox ay 0z

9 9 9
0 = (82y) + =0 G + =0 gy + 0.,
ox ay 0z

which express that the complete variations of these function are null. The variations
(dxo), (Ov0), (0z0) that figure in the last three formulas are copied from the variations that
figure in the exposition of JORDAN, as we shall see. This remark seems to seems to
have been discussed in the considerations that were developed by C. NEUMANN in his
research (2) on the MAXWELL and HERTZ equations; it conforms, on the one hand, to
the rules of calculus that were adopted by H. POINCARE, in his memoir on the dynamics
of the electron (3), which we shall discuss later on.

As far asa,a’,---,y" are concerned, we have the variations (da), ..., in the sense of
JORDAN; however, the variations that were introduced in the preceding sections, and
which we continue to denote by J¢, ..., will be the complete variations, in such a way

that one will have:

oo = ((Sa)+a—a<5x+a—a(5y +a—a§z.
0x ay 0z

This amounts to saying that when we introduce the variations (dq), ..., in the sense of
JORDAN, we introduce, in addition, the auxiliary functions oI ',8/',0K ', which we define

in terms of (da), dx, ... by way of:

"In general, in order to avoid confusion we denote the variations that areobtained by leaving x, y, z fixed by

().

2 C. NEUMANN. — Die elektrischen Krifte, T. 11, Leipzig, 1898; Uber die Maxwell-Hertz’sche Theorie
(Abhandl. der k. Scchs Gesells. der Wiss. zu Leipzig; Math.-phys. Klasses, T. XXVII, nos. 2 and 8, 1901-
1902).

> H. POINCARE, Rend. di Palermo, Tome XXI, pp. 129 et seq. (1905), 1906. H. POINCARE uses
different notations from ours, in particular, as far as derivatives with respect to ¢ are concerned; our

notation, d, 9, which is that of APPELL (Traité de Mecanique, Tome 11, 1* ed., pp. 277), is the opposite of
POINCARE. He distinguishes the ordinary variation (d¢) of a function ¢ in the sense of JORDAN, which

d
he denotes by d—(pdg, from its variation d¢ (which we call complete), which he denotes by Z—lpée [in
£ £

particular, see the formula (11 bis), page 140].
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S'=>"y0 = r(0B) +[p,10x +[q,10y +[r,1&,
(87) o' = Zaéy = Za(éy) +[p,10x +[q, 10y +[r, 1z,
OK' =Y Boa =Y B(0a)+[p;1dk+[q;10 +[r1.

The fundamental convention is expressed by the relations (86), as one sees. It will be
found, in an eventual work on the theory of temperature, for the functions that figure by
way of their differential parameters — for example, in the case that amounts to a pointlike
medium - if one abstracts from the formulas in which the complete variations of these
functions are presented.

One will observe that presently the simplest way to perform these calculations is not
the one that was followed in the aforementioned exposition of JORDAN, but consists of
determining, as we did before, the complete variation of the function under the
integration sign. Nevertheless, in view of the comparisons that are to be performed when
one develops the two viewpoints that are suggested by the notion of temperature later on,
it will be useful to likewise follow the path of JORDAN.

We have:

®8) o [[[ Qavdydzar =[ jjj{g(éxoﬂg(éyowg(ézo)

0€2 0€2 0€2 0€2
+Z{@(é@i)%~--+@(é<n>)}+@(é<§>)+---+%(6<r>)

+ i(Qéx) + i(Qéy) + i(Qéz)}dxdydzdt,
dx dy dz

in which the () sign corresponds to the variation that is obtained by leaving x, y, z fixed,
in such a way that one has, in a general fashion:

(89) (éf)=§f—df§x—df§y—dféz.
dx dy dz

We substitute the auxiliary functions dx, dy, dz,61',6J',0K ' that are defined by the

formulas (86), (87) for the variations (dxy), ... In regard to the integration over t, we
must also recall that the domain of integration over x, y, z varies with 7, and that one may
not switch the order of integrating over ¢ and the system of integrations over x, y, z in the
habitual fashion that is employed for the variables xy, yo, zo.

If we replace (xo), (o), (7o), (A &)), ... by their values from (89), which subsumes
(86), we obtain:

(90) aj: msgzdxdydzdt=j: jﬂ{-%&-%éy—%&
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o3[ (o) - a()w e 22 @ 22 )

+ 4 (Qx) + 4 (Qoy) + — (Qéz) dxdydzdt.
dx dy dz
If we consider first

Al 1 T it

+ i(Qéx) + —(Qéy) + —(Qéz)}dxdydzdt,
dx dy dz

and then:

Ll JM {6(5) 5(E))+ } 5 o@)e-- j(f)w(r))}dxdydm,

just as, in the preceding section, we divided the sum into:

on [ ][ (aéx 0% aaészxdydzdt,

and (92), one sees that the calculation is identical to the one that we did earlier.

78. — The Lagrangian and Eulerian conceptions of action. The method of
variable action applied to the Eulerian conception of action as expressed by the
Euler variables. — In his work sur la dynamique de I’électron, which was presented at
the July 23, 1905 session of the Cercle de Palerme, H. POINCARE presented a
conception of the action for an infinite domain that was different from the one that we
envisioned up till now. If one clarifies the idea of H. POINCARE when considering a
finite domain then one is led to distinguish the following two conceptions of action, the
one being Lagrangian, and the other, Eulerian.

We may integrate the general function W or Q over the independent variables (') xo,
Yo, 20, or the independent variables (%) x, y, z in a fixed domain, and then integrate over 7.

1. Start with the space (My), and imagine that an observer attached to the reference
axes directs his attention to a portion (Sp) of that space and to the different positions that
it ultimately takes, namely: (S) at an arbitrary instant #, (S;) and (S,) at the times #, and #,.

We imagine the integral:

" In this case, we denote the function by W.

* In this case, we denote the function by Q.
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.[ - .[ ”.S Qdxdydzdt,

in which the domain of integration (S) with respect to x, y, z varies with t, and which
takes the form:

.[jz .[ .[ J.so Wdx,dy,dz,dt,

upon effecting the change of variables that is defined by (66")or (68'), in which W
denotes the expression that is obtained by replacing the letters x, y, z in QA by their
expressions in (66") , and the domain of integration over xo, yo, zo, (So) is independent of t.
We then have the Lagrangian conception of the action.

2. While always envisioning an observer that is fixed with respect to the reference
axes, imagine that he constantly directs his attention to fixed and definite portion of space
(M); let xo, yo, Zo denote the coordinates that are calculated by means of formulas (68’) at
the point M, of (My), and becomes the point M of (M), with coordinates, x, y, z at the
instant ¢, and let (Sp) be the region contained in M, that becomes (S) at the instant, ¢; we
may then let (So1), (So2) denote the regions that (Sp), which varies with ¢, becomes for the
values #; and #, of .

If Q refers to both x, y, z, and the functions expressed by the formulas(66’) then we

envision:

.[ - .[ ”.S Qdxdydzdt,

in which the domain of integration over x, y, z — namely, (S) — is independent of t this
time, and which takes the form:

.[: .[ .[ J.so Wdx,dy,dz,dt,

upon effecting the change of variables that is defined by (66")or (68"), in which the

domain of integration over x, y, z — namely, (S) — varies with t. We then have the
eulerian conception of action.

We have considered the first case in the earlier paragraphs; we shall now occupy
ourselves with the second one. Formula (88) is then replaced with the following (1):

(88" ((sj: msgdxdydzdt)=£2 I1]; g(éxong(éyoﬂg(&o)

' Upon referring to the exposition of JORDAN, one will observe that the terms

d d d
e (Qox) + . (Qd6y) + e (Q6z) come from the fact that the domain is moving, and correspond to the
x ly z

variation of the letters x, y, z, as well as the independent variables.
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0Q2 .
+Z{a(§)( 5(&))+- 6( )(5( ))} 6(5)(6(5)) a(r)(é(r))}dxdydzdt,

and, by virtue of (89), formula (90) is replaced by the following one:

(90") [5[ ”Ldedydzdt) j ”ﬂ - _d—yéy_d_z

Q2

This sequence of calculations resembles the ones in sec. 77. At the same time, a
difference was introduced as far as the derivatives with respect to time are concerned. At
the moment, one may exchange the integration over ¢ and the integration over the domain
of the variables x, y, z, and, that exchange having been performed, the integration over
time must be done by imagining that x, y, z are constant. The integration by parts over

. . o 0 d
time must be done by making them depend on the derivatives 5 and not on 5 as we
t t

did in sec. 76 and 77, and conforming to the remark made in sec.75 and 76.

The integration by parts now gives:

(o] [[[ araazar)

tz ' ! ! ' ! ! ! ' o ! !
=.[ .”.S{(lpxx+mp)x+npzx)§x+(lpx)+mp))+npz))§y+(lpxz+mpﬂ+npzz)§z
+(l'q,, +mq, +n q,.)0l +(l G, +mq, +n qzy)d] +(lq,.+mq, +nq. )6K}d0dt

{.”J.[ (5x+—<5y+—(5z+—<51 QA/(S'J+%§’Kjdxdydz}

t apxx 6px ap;x 9 A dQ
[ e s 02,

P + ap” + P +i£ EJéy

1)

h

+ +
0x ay dz Jot A dy
ap.. Op,. ap! Q

+ pxz + p)» + pzz +— a C d 62
0x ay dz ot A dz
g’ 9q,. 9 ,

+ CIx_x + q) + CIZX a - p)z _ pzy 6]
0x ay 0z 6 A :
dg.. dq’. 0

At 20 q” 20 + P = P |07
0x ay 0z 6 A
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a ! a /'7 a ! a Rl 12 !
+ q + q)' + 9z +——+ pxy — pyx 0K dXddedt,
dx dy dz  at A

in which we have set, with the notations of sec. 72 and 73:

%' - & = (A 1= (BYLET - (©1E]- (PR 1= (@)1 p] - ROLp .
%’ - = (A1 - (B, 1= (€)1 - (Pl 1 - (@lgs 1= (R)g, .
% - & = (W)l (Bl 1= (€, 1= (P15 1= (@)1 ] - (RO
%’ - L= [Pl=a(P)+ @) + ¥ (R).

2L (01- P+ FQ)+ 1R,

% - L= [RI=a'(P)+ Q)+ (R,

P = - {ANET+IPIp, 1}

Pl =-> B IE1+(0,1lp, 1}
Pl =-> {CUET+[R P, 1}

with analogous formulas for p. ,p. ,p.;p...p,. ,p. thatare obtained by changing [&],
[pi] into [#:], [¢:], and then into [&], [ri], respectively, and, in addition:

4. = alP 1+ BIP, 1+ [P,
4, =alQ1+ BlO,1+y10;1,
q,. =R 1+ BIR,1+7[R;],

with analogous formulas forq, .q,,.q.,:49..,q,.,q.. that are obtained by changing o, f, 1,

intoa’, ',y ,and then into”, B",y" ,respectively.

Observe that:
0A dA dcoA dyoA dzo A

ot A dt A dtax A dtay A dtoz A

may, by virtue of the relation:

ldh_ddc ddy 9de

Adt oxdt dydt dzdt
be written:
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_iéi_lﬁLﬁui[AV”j [Ac@j a[Ackj
A A di Adr) 9y\Adt) oz\ A di

ii’_idi_i[l”@j_i[ﬂﬂj_i[ﬂﬂj
a A Ad ax\Ad) oy\Adt) oz\ A dt)

similarly:

On the other hand, A" = A, P' = P; from this it results that one has:

P, P’ Lo A dQ p, 0Py dp, 1dA
0x ay 0z at A dr o ox ay 0z A dr’
and:

9 ’ J /vx ’
qxx + q) + aqzx
0x ay 0z

ad 99, 0 14dpP B
D q, L9, dp tp, -+ Cdy dz,
ax dy 0z A dr ' S Adt Adt

! !

+i£+
at A Py ™ Po

with analogous relations.
The force and exterior moment thus have the same definition as in sec. 62, 63.

However, the same is not the case for the effort and the moment of deformation; from
sec. 72,76, we have:

, Adx

- =q. =Q-———
, Ady

93 =P =T, = -
(93) Pp—Py, =7, A dr
po—pl em = A%

s s s Adt’

with analogous expressions for 7y, 7y, 7y; 7, 7., 7. that are obtained by cyclic
permutation of A, B, C, and x, y, z; in addition:

_ __Pax

! ! de
93 g =y =Y
93) 9y =90 =X A dr
g.-q. =z, =-L&

X X Adt

with analogous expressions for X, Xy, Xovs Xz» Xoo» Xez that are obtained by cyclic
permutation of A, B, C, and x, y, z.



Euclidian action from the Eulerian viewpoint 243

79. The method of variable action applied to the Eulerian conception of action
as expressed by the Lagrange variables. — We shall once more develop the Eulerian
concept of action with the Lagrange variables. We begin with the integral:

.[: .[ .[ J.so Wdx,dy,dz,dt,

in which the domain of integration over xy, Yo, Zo now varies with time ¢, and corresponds
to the fixed integration domain that is described by the point (x, y, z).
Following the exposition of JORDAN, we have:

of" [I[ wex,dy,dzdr
: W oW oW
.[l J'.”.so|: (_‘55 '+a—ri<5r,»j+a—§§’§+ +?§r

+iwwm»5?MWm%f$W%ﬂmmwwn

Xo Yo 4

in which (dx), (do), (Jzo) are defined by formulas (86) by means of the auxiliary
variables ox, dy, Jz.

The sequence of calculations resembles those that we encountered in the dynamics of
deformable media; at the same time, a difference was introduced, insofar as
differentiation with respect to time is concerned. This time, one may not change the
order of integrating over time and integration over the domain of variables xo, yo, z0. One
will therefore apply reasoning analogous to that of sec. 76. One first introduces only the

o . o d .
derivatives with respect to time in the form a—by using the formula:
t

OF _dF  OF 0x, OF 9y,  9F dz,
ot dt ox, ot 9y, ot Az, ot

X, ayo
or ot
of x, y, z, t that one 1nfers from formulas (66"). Upon using the notations we introduced

. . 0z
in which —2 denote the derivatives with respect to  of the functions xo, yo, Zo,

before, the preceding formulas may be written:

(94) 97 “Fwa F Lo

at X, 3y, 9z,

If one has a term of the form:

I; .U.[so g(z_l:dxodyodzodt
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then one writes:

I ”Liz—ildxdydzdt,

and, upon integrating by parts:

[l {ih} dxdydz - j | ”h [ jdxdydzdt
={j ([ ihdxdydz} j | ”h [ jdxdydzdt

1.e., reverting to the variables xo, yo, 2o:

{[” ghdxodyodzo} j [[f,ra= [ jdxodyodzodt

Having said this, from the previous formulas for the dynamics of deformable media and
from (94), we obtain, upon integrating by parts:

o[ [[[ wax,dy,dz,dr
=" ([ (Fox+G 6y ++H 8L +I'8l'+J 81 + K.0Kdo, dt
A s, 0 0 0 0 0 0 0
+{”J.S (A'é'x+B'6'y+C'6'z+P'61'+Q'd]'+R’6K’)dx0dy0dz0}t2
=[0I Kook + Y0y + 200+ Ligl + M{AT' + NyoK 'y dy,dz,di

upon setting:

aW ow
W Ne 0 2W e ';W -
S R S T
Gh%{ﬂ— —(5)—} { (W —<n)ﬂ}+ o{aW—< W —(g)ﬂ}
an, an an
H) =1 {ﬂ% W —(5)—} { —(n)—}mo{——( W —(g)ﬂ},
d¢, il
1 =1 {——(5)—} mo{——< )—} {——( )—}
6p3

e
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K, = lo{ﬂ—@ﬂ}mo{ﬂ—(n)ﬂ}mo{ﬂ—(g)ﬂ},

or, ar or, or or, or
, a (oW ow a (oW ow a | oW ow
Xo="—|"%-©& + - () + -©)—=
ax, | 9&, 9E | ay, | 0, IE ) 9z, | 0&, dE
ow ow 91w ow 0w
) PRASIRLE YA RRLS FPLLASALE
9g, n, at\ A o& dg an
, 0 [OW ow a [ oW ow a [ oW ow
e (2 ) () 2 0
ox, \ dn, on ) dy,\ on, an ) 09z, \ 91, on
ow ow 91w ow ow
1) FRAGRMLA IO KL LSS
9, ag, at\ A on & g
, a (oW ow a (oW ow a | oW ow
SRICTP AN AN (T
dx, \ 06, s ) Iy, 9¢, dg ) 9z, 9¢; ag
ow ow 91w ow 0w
+D P |+ A | — +P =G0
an, &, ot A dg an &
, a (oW ow a (oW ow a [ oW ow
L, = - + - + - (<)
d9x, \ 9p, ap ) 9y, \ 9p, dp ) 9z, \ 9p, ap
ow ow ow ow (10w ow oW W W
2 G G F A e g
or, dq,; ag, on, t\A dp or dq ¢ on
, a | oW ow a (oW ow a | oW ow
My =— - + - () + -(©)—
9x, \ g, dq ) 9y, \ 9, dq ) 9z, \ 9q, d
"'Z naW_plaW 5-iaW_é_,laW +Ai 10w +raW_paW+§aW_§aW,
p, 9 9E ' ac, atl A dg p ar T AE T oc
, a (oW ow a (oW ow a [ oW ow
MY () NEY T N
ox, \ dr, or ay, \ or, or 0z, \ ory d
ow ow ow ow 4 ow oW _oW W
+Z Di =4 +&; =1 +A— — + -q +& -n .
dq, ap, an, a&, at\ A or dq dp an &

We may observe that by virtue of (94) X, , for example, may be written:

X6=Z(a oW 9w aw}riaw+ oW aw

+Qi r, q r
Ip; 05, a¢; an, ) dt o0& ac n
_[LoA 9 e 3o
A o a'XO ayo aZO 6§

however, one has:
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1A _ (9@, 06  9()
A ot ax, dy, 0z, )

and, as a result, X, has the same value:

, J0 oW ow ow d oW ow ow
=> +q, — -, +—— b g— - —,
9p; 0&; dg;  dm; ) dr 9% ¢ Iy
as in sec. 62; the same remarks apply to Y,,Z,,L,,M,,N,. However, the same is not

true for the effort and moment of deformation; by simple transformations, one once more
recovers relations (93) and (93") of sec. 78.

80. The notion of radiation of the energy of deformation and motion. — We have
seen that the density of energy of deformation and motion, when expressed as a function
of the Lagrangian arguments and referred to the space of (xo, yo, 20), 1s:

) pogW W W oW W oW
& on g ap dq ar

this same density, when referred to the space of (x, y, z) and expressed by means of the

function Q of the Eulerian arguments (&), (7,), (&), (p:), (¢:), (r); (8), (1), (©), (p), (q), (r)
is:

oW oW oW
96 = - -
00 (5) 8(5) o )8(77) e a(s) Hp )a(p) (Q) a(Q) o )3( )

This result is obtained either by transforming expression (95) by means of the
relations that we indicated before that exist between the Lagrangian arguments and the
Eulerian arguments, or by directly repeating the reasoning of sec. 65 on the elementary
work:

d’WLO (EX o + 1Yy + &Zy + pLy + qM o + TN )dx,dy,dz,

_HSO (EF) +nG, + cH | + pl}, + qJ, +rK,)do, },

that the forces and external moments and the efforts and external moments of
deformation exert on the portion (M) of the medium that the portion (My) of the natural
state occupies at the instant z. By this latter path, we recover the expression:

dt { [ ﬁs ‘;—f dx,dy,dz, }

for the elementary work, in which € is assumed to be independent of ¢.
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If we observe that we has the following identity:

id_E_i[£j+i[ﬁﬁj+i[£ﬂj+i[£%j
Adt at\A) ax\Adt) oy\Adt) oz\Adt)

which was employed by POINCARE in the memoir that was cited in sec. 77, and which
we apply to an arbitrary function, then we arrive at the following new expression:

dt{% j j L%dxdydz
E dx E dy E dz
Ik {ax[A dtj ay[A dtj+ az[A dr ﬂdwydz}’
or:
9 cor E E( de dy d
(97) dt{5 {1, ~dxdydz + | jsx[ziﬂnﬁ djjdo},

for the elementary work.

The second integral in (97) expresses the flux of energy of deformation and motion
across a fixed surface S in the deformed body.

Now consider the Eulerian conception of action. In the preceding sections we
confirmed that the values of the forces and external moments remain the same, but that
the following terms disappear from the expressions for the efforts pyy, py, Pzt

XX =Q_é@’
A dt
B dx

Ty = ——"—»
i A dt
C dx

T, = ———,
) A dt

and the following terms disappear from the expressions for the moments of deformation
CIxx, qu, CIxz:

B P dx
XX,V__XE’
. Qudx
T Taar
B R dx
sz__xz’

with analogous expressions for the quantities ., 7y, 7Ty, T, Ty, T, and
Xozs Xoys Xyes Xexs Xoys Xez - From this, it results that the elementary work that is obtained in
the preceding must be added to a new surface integral that has the expression:
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{J-J-[l__l_ dy dzj{g__[ dx dy Cdzj
dt dt dt A dt dt dt
—{p(P) +q(Q") + r(RH Ho}:

One may call this new integral the flux of radiant energy crossing the boundary S of the
deformed body.

The reasoning made in sec. 64, which was based on the Euclidean invariance of the
action density, no longer leads to the same conclusions for the forces and external
moments as it does for the new efforts and external moments of deformation. This may
be interpreted by saying that the new efforts and moments of deformation no longer
satisfy what POINCARE called the principle of reaction. This latter conclusion is
likewise recovered, as one knows, in the electric theory of LORENTZ. However, the
existence of radiation that we just showed permits us to approach the efforts and
moments of deformation 7., 7y, ..., X, Xpx» ... as being what MAXWELL, from
considerations deduced from the electromagnetic theory of light, and BARTOLI, from
those of thermodynamics, called the pressure of radiant energy, and one may therefore
retrieve the principle of reaction.



	Untitled

